# Measurement of the W mass and width at FCC-ee

Lol: #166

Paolo Azzurri – INFN Pisa

Snowmass 2021 EF04 session

August 13, 2021

#### Measurement of the W mass and width at FCC-ee

Contribution to Snowmass 2021

Paolo Azzurri<sup>1</sup>, Alain Blondel<sup>2</sup>, Patrick Janot<sup>3</sup>, and Elizabeth Locci<sup>4</sup>

<sup>1</sup>INFN Pisa, Italy <sup>2</sup>University of Geneva, Switzerland, and LPNHE IN2P3/CNRS, Paris, France <sup>3</sup>CERN, Geneva, Switzerland <sup>4</sup>IRFU, CEA Saclay, France

https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF4\_EF5\_Paolo\_Azzurri-166.pdf

Two independent W mass and width measurements @FCCee :

- **1.** The  $m_W$  and  $\Gamma_W$  determinations from the WW threshold cross section lineshape, with 12/ab at  $E_{CM} \simeq 157.5-162.5$  GeV
- 2. Measurements of  $m_W$  and  $\Gamma_W$  from the decay products kinematics, with qqlv and 4q decays at  $E_{CM} \simeq 162.5-240-365$  GeV

P. A., The W mass and width measurement challenge at FCC-ee in A future Higgs and Electroweak factory (FCC): EPJ+ special issue, <u>arXiv:2107.04444</u>



#### Vs=162 GeV : L~3 10<sup>35</sup> collect 12/ab 45-60 10<sup>6</sup> WW decays

3.10<sup>5</sup> (LEP 161)

√s=240 GeV : L~0.7 10<sup>35</sup> collect 5/ab **80 10<sup>6</sup> WW decays** 

2·10<sup>3</sup> (LEP 200)

√s=365 GeV : L~ 10<sup>34</sup> collect 1.65/ab **20 10<sup>6</sup> WW decays** 





In total **→ 300 10**<sup>6</sup> W decays

# WW threshold lineshape

2m\_

161 162 E<sub>CM</sub> (GeV)

155 156 157 158 159 160 snowmass EF04 - Aug 13, 2021

#### arXiv:1703.01626 arXiv:1909.12245 Phys. J. ST 228 (2019) 261

**CDR(V2)** Eur. Phys. J. ST 228 (2019) 261 *Eur.Phys.J.C* 80 (2020) 1 (with CEPC)



P. Azzurri - W mass & width @ FCCee

# WW threshold lineshape

$$\Delta m_W = \left(\frac{d\sigma}{dm_W}\right)^{-1} \Delta \sigma$$



 $\Delta m_W(stat) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{L}} \frac{1}{\sqrt{\epsilon p}}$ 

Vep with fixed :  $\epsilon$ =0.75 and  $\sigma_B$ =0.3pb

$$\Delta\sigma_{WW} = \frac{\Delta\sigma_B}{\varepsilon}$$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\Delta\sigma_B}{\varepsilon}$$

$$\Delta \sigma_{WW} = \sigma \left( \frac{\Delta \varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L} \right) \quad \Delta m_{W}(\varepsilon) = \sigma \left( \frac{d\sigma}{dm_{W}} \right)^{-1} \left( \frac{\Delta \varepsilon}{\varepsilon} + \frac{\Delta L}{L} \right)$$

$$\Delta m_{W}(E) = \left(\frac{d\sigma}{dm_{W}}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E$$

$$\Delta m_{\scriptscriptstyle W}(E_{\scriptscriptstyle b}) \,{=}{\leq}\, \Delta E_{\scriptscriptstyle b}$$

Max stat sensitivity at  $Vs=2m_w+600 \text{ MeV} = 161.4 \text{ GeV}$ 

# WW threshold lineshape



#### $\Delta m_W$ , $\Delta \Gamma_W$ : error on W mass and width from fitting both $\Delta m_W$ : error on W mass from fitting only $m_W$

Measure  $\sigma_{WW}$  at two energy points  $E_1$ ,  $E_2$ with a fraction f of lumi in  $E_1$  $\rightarrow$  measure both  $m_W \& \Gamma_W$ 

Determine f,  $E_1$ ,  $E_2$  such to mimimise ( $\Delta\Gamma_W$ ,  $\Delta m_W$ ) with some target





optimal E points with limiting correlated systs

impact of **correlated** systs can cancel out taking data at more  $E_{CM}$  points where





differential factors are equal

optimal to take data at different  $E_{CM}$  points in the 159-163 range where the derivative factors are equal (around their minima)

## beam energy spread



Maximum effects are at the level of  $\Delta m_w$ (stat) and  $2x \Delta \Gamma_w$  (stat) so that control on the beam energy RMS <50% is required to avoid additional syst contributions from this source

# interlude : the ZH threshold



# interlude : the ZH threshold





snowmass EF04 - Aug 13, 2021

12/ab @157-162 GeV : 50 10<sup>6</sup> WW 5/ab @240 GeV : 80 10<sup>6</sup> WW 1.65/ab@365 GeV: 20 10<sup>6</sup> WW Total ~150M WW

$$M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$$

 $\theta$ ,  $\beta$ : jet polar angles and velocities



 $\rightarrow \Delta \Gamma_{W}$  (stat) ~ 1 MeV



Preliminary studies of FSI effects and how to reduce their impact Jet reconstructions with cone / momentum cuts degrade stat precision by 4%-10%-15% at 162 – 240 – 365 GeV, reducing sensitivity on FSI effects by factors 2-3.

M. Béguin, PhD thesis <u>https://cds.cern.ch/record/2710098</u> PA, M. Béguin, E.Locci *PoS* EPS-HEP2019 (2020) 653 https://doi.org/10.22323/1.364.0653

→  $\Delta m_W$  (stat) ~ 0.5 MeV →  $\Delta \Gamma_W$  (stat) ~ 1 MeV

 $\Delta E_{CM}$ =0.3 MeV at  $E_{CM}$ =162GeV with Resonant depolarization

 $M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$ 

How to obtain  $\Delta E_{beam}$ ~1MeV at  $E_{CM}$ =240-365 GeV ? Can make use of radiative Z-returns (Z $\gamma$ ) and ZZ events

What about other syst ?

Table 9: Summary of the systematic errors on  $m_W$  and  $\Gamma_W$  in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled  $\ell\nu q\bar{q}$  lists the uncertainties in  $m_W$  used in combining the semileptonic channels.

|                                     | $\Delta m_{ m W}~({ m MeV}/c^2)$ |                   |                   |                                     | $\Delta\Gamma_{ m W}~({ m MeV})$ |                         |                     |                      |
|-------------------------------------|----------------------------------|-------------------|-------------------|-------------------------------------|----------------------------------|-------------------------|---------------------|----------------------|
| Source                              | $e\nu q\bar{q}$                  | $\mu u$ q $ar{q}$ | $	au u$ q $ar{q}$ | $\ell  u \mathrm{q} \mathrm{ar{q}}$ | $e u q \bar{q}$                  | $\mu u$ q $ar{	ext{q}}$ | $\tau  u q \bar{q}$ | $\ell \nu q \bar{q}$ |
| $e+\mu$ momentum                    | 3                                | 8                 | -                 | 4                                   | 5                                | 4                       | -                   | 4                    |
| $e+\mu$ momentum resoln             | 7                                | 4                 | -                 | 4                                   | 65                               | 55                      | -                   | 50                   |
| Jet energy scale/linearity          | 5                                | 5                 | 9                 | 6                                   | 4                                | 4                       | 16                  | 6                    |
| Jet energy resoln                   | 4                                | 2                 | 8                 | 4                                   | 20                               | 18                      | 36                  | 22                   |
| Jet angle                           | 5                                | 5                 | 4                 | 5                                   | 2                                | 2                       | 3                   | 2                    |
| Jet angle resoln                    | 3                                | 2                 | 3                 | 3                                   | 6                                | 7                       | 8                   | 7                    |
| Jet boost                           | 17                               | 17                | 20                | 17                                  | 3                                | 3                       | 3                   | 3                    |
| Fragmentation                       | 10                               | 10                | 15                | 11                                  | 22                               | 23                      | 37                  | 25                   |
| Radiative corrections               | 3                                | 2                 | 3                 | 3                                   | 3                                | 2                       | 2                   | 2                    |
| LEP energy                          | 9                                | 9                 | 10                | 9                                   | 7                                | 7                       | 10                  | 8                    |
| Calibration ( $e\nu q\bar{q}$ only) | 10                               | -                 | -                 | 4                                   | 20                               | -                       | -                   | 9                    |
| Ref MC Statistics                   | 3                                | 3                 | 5                 | 2                                   | 7                                | 7                       | 10                  | 5                    |
| Bkgnd contamination                 | 3                                | 1                 | 6                 | 2                                   | 5                                | 4                       | 19                  | 7                    |

#### lepton and jet uncertainties from (Z) calibration data



## FCCee EW physics summary

- Core repetition of the LEP physics program with large precision improvements (x20-500)
   capabilities, and a large number of additional opportunities given the huge luminosity and higher collision energies
  - Z mass and width,  $\alpha_{\text{QED}}(\text{m}_{\text{Z}}),$  N $_{\nu}$
  - $R_{\ell}$ ,  $\alpha_s(m_z)$ ,  $R_b$ ,  $R_c$ , ...
  - $A_{FB}$ ,  $sin^2\theta_{eff}$
  - W mass and width (threshold and kinematic)
  - Direct W universality and CKM elements
  - Gauge couplings
  - Multiboson productions and scattering
  - Z radiative returns (Direct invisible Z width)
  - ....



 Work still ongoing to evaluate with more care all possibilities, design the measurements, estimate (limiting) systematics, study ways to overcome them, and reflect on the detector design requirements