
Using libdispatch
while reading with
ROOT

Christopher Jones
FNAL

1

libdispatch and ROOT Input Concurrency Workshop FNAL

Outline
Goal and Strategy

Threading Models

Test Case
Parallelizing within one event
Parallelizing two events

Conclusion

2

libdispatch and ROOT Input Concurrency Workshop FNAL

Goal & Strategy
At The October Concurrency meeting at CERN
I presented a demo of a highly threaded framework

http://dl.dropbox.com/u/11356841/Threaded_Framework_Discussion.pdf
Attendees were challenged to get ROOT I/O working with their thread model

Goal
Maximize CPU utilization while minimizing memory

Strategy
Run as many events in parallel as memory allows
Break up actions within one event into parallelizable chunks

utilizes more cores if memory becomes constrained
in case of cross-event synchronization points, allows remaining events to process faster

Share as much memory across events as possible
E.g. Input buffers

3

Threading Models

libdispatch and ROOT Input Concurrency Workshop FNAL

Test Threading Model
Uses libdispatch
Developed by Apple Inc
Port is available for Linux and Windows

Task Queue based system
Task is a function plus context

Context can be any data you want
Task is then placed in a light weight queue
System guarantees that cores are not oversubscribed
Global Concurrent Queue

One per process (in Mac OS X one per machine)
Task placed here will be pulled in FIFO order
Multiple tasks can be run simultaneously (based on # of cores)

Private Sequential Queues
Lightweight (memory/CPU) queue of tasks
Can handle thousands of sequential queues per process
Task placed here will be pulled in FIFO order
Only one task from a given queue will be run at a time
Guarantees sequential behavior without having to use thread primitives

Task Groups
Can group multiple tasks into a group
Can register a different task to run once all tasks in a group finish

5

libdispatch and ROOT Input Concurrency Workshop FNAL

Global Concurrent Queue

6

Cores

G
Queue

Tasks pulled in order and run
concurrently

libdispatch and ROOT Input Concurrency Workshop FNAL

Global Concurrent Queue

7

Cores

G
Queue

Tasks pulled in order and run
concurrently

libdispatch and ROOT Input Concurrency Workshop FNAL

Global Concurrent Queue

8

Cores

G
Queue

Tasks pulled in order and run
concurrently

libdispatch and ROOT Input Concurrency Workshop FNAL

Global Concurrent Queue

8

Cores

G
Queue

Tasks pulled in order and run
concurrently

libdispatch and ROOT Input Concurrency Workshop FNAL

Global Concurrent Queue

8

Cores

G
Queue

Tasks pulled in order and run
concurrently

libdispatch and ROOT Input Concurrency Workshop FNAL

Private Serial Queue

9

Cores

S
Queue

Tasks pulled in order with only one
run at a time

libdispatch and ROOT Input Concurrency Workshop FNAL

Private Serial Queue

10

Cores

S
Queue

Tasks pulled in order with only one
run at a time

libdispatch and ROOT Input Concurrency Workshop FNAL

Private Serial Queue

11

Cores

S
Queue

Tasks pulled in order with only one
run at a time

libdispatch and ROOT Input Concurrency Workshop FNAL

Private Serial Queue

11

Cores

S
Queue

Tasks pulled in order with only one
run at a time

libdispatch and ROOT Input Concurrency Workshop FNAL

Private Serial Queue

11

Cores

S
Queue

Tasks pulled in order with only one
run at a time

libdispatch and ROOT Input Concurrency Workshop FNAL

ROOT’s Thread Model
Global Mutexes
Used to protect gROOT, CINT internals, etc
Used in memory handling in TStorage global functions

Thread Local Storage
Used TClass primarily for I/O layer

TClass holds one TVirtualCollectionProxy
Pointer to collection changed for each instance of that collection seen in a TBranch
TClass holds one TClassStreamer
Allows user to override streaming -> not used by CMS

NOTE: assumes thread accessing TClass function is the one that will use the
value retrieved

TThread::initialize()
Turns on thread local storage and TStorage mutex

12

Test Case

libdispatch and ROOT Input Concurrency Workshop FNAL

Test Case
Read a ROOT file and process 4 branches each event

File
TTbar reconstruction with no pileup

reasonably large numbers of objects
split level 1
7700 events
900 events per cluster

8 clusters in the file

Branches read
CaloTowers
Tracks
2 types of jets

Test Machine
Macbook Pro
2.8GHz Intel Core 2 Duo
4 GB 1067 MHz memory

14

libdispatch and ROOT Input Concurrency Workshop FNAL

Job Structure
Open TFile

Setup TBranches
Guarantee that a TBranch is assigned to one and only one Event

Setup TTreeCache
Tell it about all 4 branches
Stop learning phase

Process Events
Read all 4 branches for each event
Wait until all branches have finished reading before going to next event

All time measurements are only for event processing time

15

Parallelizing within
One Event

libdispatch and ROOT Input Concurrency Workshop FNAL

Single Threaded
Event Logic

Best possible parallel branch reading: 6.68s

17

Fill
TTreeCache

Read Branches

Next
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

Key: Unzip
 Deserialize

Fill TTreeCache 0.24s
CaloTowers branch 6.44s
Tracks branch 2.08s
Jets1 branch 0.52s
Jets2 branch 0.31s
Total 9.60s

Total Event Times

libdispatch and ROOT Input Concurrency Workshop FNAL

Multi Threaded
Event Logic

Parallel handling of branches
Use group to wait for all branches of an event to finish before continuing

18

Fill
TTreeCache

Read Branches

Next
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

Key: Unzip
 Deserialize

libdispatch and ROOT Input Concurrency Workshop FNAL

Modifications to ROOT
TVirtualCollectionProxy
ROOT makes only one TVirtualCollectionProxy per class type

holds methods used to interact with a collection
also holds temporary pointer to a collection instance in order to manipulate the collection

No longer holding temporary pointer to a collection instance
Use of the proxy replaced with a new class with instance on the stack

New class holds a pointer to TVirtualCollectionProxy and the collection instance

Buffer management
Compressed buffer for reading was shared by all TBranches in a TTree
Moved so each top level TBranch has own compressed buffer

assumes that reading a TBranch is a sequential operation

TBasket::ReadBasketBuffers
If data is in TTreeCache’s buffer, call directly to cache without changing TFile’s
state

19

libdispatch and ROOT Input Concurrency Workshop FNAL

Profiling:Instruments
Instruments is Apple’s performance tool
Presents information in time order
Allows filtering of information by time range

System Trace
Records all system calls

I/O, interrupt handling, locks, etc.
Records all virtual memory activities

Zero page fills, Copy on Write, etc
Records thread state transitions

context switches, blocking, running, supervisor

Time Profiler
Samples executable and kernel at regular time intervals
Snapshots stack traces for all threads

20

libdispatch and ROOT Input Concurrency Workshop FNAL

Single Threaded

Thread State Key
 blocking
 user
 supervisor
 preempted
 interrupt

21

Main View Area
X axis shows events in time order
Y axis shows threads
Thread state is given by color of bar
System activity on thread given by icon

libdispatch and ROOT Input Concurrency Workshop FNAL

Multi-Threaded 1

Event loop on main thread
Can see ‘blue telephones’ which show the wait on a dispatch group

Time: 8.21s
1.17x faster than single threaded
81% of theoretical max

22

libdispatch and ROOT Input Concurrency Workshop FNAL

Multi-thread 2

Main loop waits for all events to be processed

Going to next event is handled by calling a function placed in a
serial queue

On finish of event a new task is added to the global queue

Time:8.13s
1.18x faster than single threaded
82% of theoretical max

Use of queue rather than waiting in main thread was faster

23

Multiple Events

libdispatch and ROOT Input Concurrency Workshop FNAL

Two TFiles
Open 2 TFiles on the same file
Avoids the need for synchronization

Run two tasks on the global queue
Each task has its own TFile
One task does even events and the other task the odd events

25

Fill
TTreeCache

Read Branches
Next
Even
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

Key: Unzip
 Deserialize

Fill
TTreeCache

Read Branches
Next
Odd
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

libdispatch and ROOT Input Concurrency Workshop FNAL

Two TFiles

Notice how few system calls (telephones)

Time:6.9s
1.39x faster than single threaded

NOTE: by avoiding TThread::Initialize() I save 7%

26

libdispatch and ROOT Input Concurrency Workshop FNAL

Shared TTreeCache
Simple case where branches wait for the cache to fill
Each event has own TFile, TTree and TBranches
TFiles have been changed so they can share one TTreeCache
Access to check on availability in TTreeCache is done through a queue

27

Fill
TTreeCache

Read Branches

Next
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

Key: Unzip
 Deserialize

In
Cache?

in cache
(900 events in cluster)

libdispatch and ROOT Input Concurrency Workshop FNAL

Shared TTreeCache

TBasket read blocks on TTreeCache inspection

Notice the 7 synch lines from the TTreeCache fills
All the extra threads are because when one thread waits, libdispatch starts
another thread since it doesn’t know the next task will also have to wait

28

libdispatch and ROOT Input Concurrency Workshop FNAL

Shared Cache No Waiting
Check when looking for next event to see if in cache
If in cache don’t do any wait
If not in cache, hold until all tasks reading cache are done, fill cache and then
start tasks for next events

29

Fill
TTreeCache

Read Branches

Next
Event

in cache
(900 events in cluster)

not in cache
(8 clusters in file)

Key: Unzip
 Deserialize

in cache
(900 events in cluster)

libdispatch and ROOT Input Concurrency Workshop FNAL

No Waiting

Much fewer threads

Time:6.7s
1.43x faster than single threaded

30

libdispatch and ROOT Input Concurrency Workshop FNAL

Why So Slow?
Look at Time Profiles

Duplicating work on each thread
Events are each unzipping the same baskets

Change 2 TFile case
Have one thread read 1st half of file and other thread read 2nd half of file
Time:5.06s which is 1.90x faster than single threaded

31

Single
Threaded

Two
TFiles

Shared
Cache

Unzip
Baskets

2843.0ms
29.8%

5755.0ms
43.5%

5839.0ms
44.6%

Deserialize 6308.0ms
66.2%

6603.0ms
49.9%

6587.0ms
50.3%

libdispatch and ROOT Input Concurrency Workshop FNAL

Conclusion
Nice if ROOT was more thread friendly
Removal of global caching in the I/O layer
Also helpful for forking

I’d be willing to help with that

Good performance tools are a must
Time profiling
Synchronizations between threads

ROOT file structure makes event parallelization challenging
Data not grouped by event
TTreeCache and TBaskets correlates data across events

Important to separate serial and parallel parts
Blocking other threads while only one updates a cache ‘lazily’ causes libdispatch
to spawn more threads

32

Backup Slides

libdispatch and ROOT Input Concurrency Workshop FNAL

Exploration
I spent a couple of weeks building a demo threaded system

Features
Process multiple events simultaneously

Can set maximum # based on available memory

Within one event can run paths in parallel
A path is a series of filters that decide to keep or reject an event

Producers are run the first time their data is requested
Multiple Producers within one Event can run at the same time

Supports thread unsafe modules (or parts of modules)
Would allow transition

Supports threading internally to a module using same thread pool
Supports using the same module instance for all events

Minimizes memory use

Makes sure all events in a Lumi Block are processed before going to next block
When hit lumi end, remaining events get more cores to process so go faster

Makes sure all events in an IOV are processed before going to next block
Minimizes memory used by EventSetup
When hit IOV change, remaining events get more cores to process so go faster

34

