
SHARING C++ OBJECTS
IN LINUX

Roberto Agostino Vitillo (LBNL)

1

EXAMPLE USE CASE

Process A Process B

Database of objects in shared memory

object

object

object

object

V
ir

tu
al

 M
em

or
y

A

V
ir

tu
al

 M
em

or
y

B

Physical Memory

(simplified view...)

2

OBJECT SHARING

• Objects can be allocated in shared memory segments (e.g. custom allocators)

• Assumptions:

‣ GCC ≥ 3 (Itanium C++ ABI)

‣ Linux ≥ 2.6.12 (Address Space Layout Randomization)

‣ Changing the default visibility of symbols, with visibility pragmas or linker scripts for example, is not considered

‣ Binding references to global symbols to the definition within a shared library (e.g. ld’s -Bsymbolic option) is not
considered

• Issues:

‣ Static data

‣ Pointers and references

‣ Virtual functions

‣ Virtual inheritance

3

STATIC DATA

• Static data members have external linkage; each process has
its own copy

•Non-const static data members reside in the object
file’s .data section: changes are not shared between the
processes

• Const static members reside in the object’s file .rodata
section and their semantic is not altered

• Same argument applies to local static variables

4

POINTERS AND REFERENCES

• Pointers and references can be shared only when pointing to
objects within shared segments that are mapped at the same
virtual base address in all processes

‣ allocate needed shared segments before forking

‣ allocate shared segments at the same virtual base address in
all processes

‣ use “slow” offset pointers

5

VIRTUAL TABLES

• A class that has virtual
methods or virtual bases has a
set of associated virtual tables

• The tables reside in
the .rodata section

Virtual Table Layout (Itanium ABI)

Virtual Call Offsets

Virtual Base Offsets

Offset To Top

Typeinfo Pointer

Virtual Function Pointers

• An object of such class contains pointers to the above
mentioned tables (through itself or its contained base
objects)

vtable ptr

6

VIRTUAL TABLES

class A{
public:
 virtual void foo();

private:
 int m_a;
};

class B{
public:
 virtual void bar();

private:
 int m_b;
};

class C: public virtual A, public virtual B{
public:
 virtual void foo();
 virtual void car();
};

Vtable AVtable A
0 offset_to_top(0)

8 A::rtti

16 A::foo()

Vtable BVtable B
0 offset_to_top(0)

8 B::rtti

16 B::bar()

Vtable CVtable C
0 offset_to_B(24)

8 offset_to_A(8)

16 offset_to_top(0)

24 C::rtti

32 C::foo()

40 C::car()

48 vcall_offset_foo(-8)

56 offset_to_top(-8)

64 C::rtti

72 C::foo() thunk

80 vcall_offset_bar(0)

88 offset_to_top(-18)

96 C::rtti

104 B::bar

7

VIRTUAL TABLES

• Virtual Tables reside in the object’s file .rodata section

• Methods and thunks in the .text section

• To be able to share objects that contain pointers to vtables, that in turn contain
pointers to methods, thunks and typeinfos, the vtables, methods, thunks and
typeinfos need to have the same virtual addresses on all processes

• Methods can in turn reference functions and data...

‣ object files have to be mapped at the same virtual base address on all processes

• Executables that don’t use shared libraries are loaded at a fixed address and their
initial virtual memory layout is the “same” even for unrelated processes

8

SHARED LIBRARIES

• We know that the shared libraries need to
be mapped at the same address in all
processes

• If the shared library is dynamically linked
to an executable that forks the
cooperating processes, no changes are
needed as the mapping is inherited

vitillo@eniac $ ldd /usr/bin/gcc
linux-vdso.so.1 => (0x00007fff99e6f000)
libc.so.6 => /lib64/libc.so.6 (0x00002aefcc69d000)
libdl.so.2 => /lib64/libdl.so.2 (0x00002aefcc9f5000)
/lib64/ld-linux-x86-64.so.2 (0x00002aefcc27d000)

vitillo@eniac $ ldd /usr/bin/gcc
linux-vdso.so.1 => (0x00007fff1c12f000)
libc.so.6 => /lib64/libc.so.6 (0x00002aabda159000)
libdl.so.2 => /lib64/libdl.so.2 (0x00002aabda4b1000)
/lib64/ld-linux-x86-64.so.2 (0x00002aabd9d39000)

• For unrelated processes, that dynamically link a library, we can’t rely on the load order
defined in the .dynamic section

‣ Address Space Layout Randomization

‣ Preloading can change the load order

• Dynamic loading can be an issue for related and unrelated processes

ASLR in action

9

SHARED LIBRARIES

• Workaround:

• Use a linker script to set the first PT_LOAD segment’s p_vaddr to assign to each DSO a
fixed unique load address (or use prelink)

‣ feasible for x86-64

• The dynamic linker can be modified to enforce the loading of the shared library at the
specified address since otherwise p_vaddr is taken only as a suggestion

• One could think of more sophisticated solutions whose end effect reduces to the above
mentioned one

‣ E.g. set a flag in the .dynamic section of the shared libraries that contain the vtables of
the classes whose objects we want to share and set p_vaddr only for those

• Similar considerations can be made for dynamically loaded shared libraries

10

SHARED LIBRARIES

• The One Definition Rule requires to have a single definition even
if many objects in C++ are not clearly part of a single object

• The virtual table for a class is emitted in the same object
containing the definition of its key function

• The key function is the first non-pure virtual, non-inline function
at the point of class definition

• If there is no key function then the vtable is emitted
everywhere used

11

SHARED LIBRARIES

• E.g. each shared library that is using a class
with only inline virtual functions has a local
definition of the vtable

• All shared libraries that contain a copy of the
virtual table should be mapped at the same
address...

• ...unless we are certain that the first DSO
with the incriminated vtable is loaded at the
same virtual address in all processes

‣ relocation and symbol interposing take
care of the rest

• Workaround: classes whose objects need to
be shared are required to have a key function

DSO A

class A{
public:
 virtual void foo(){};
};

got

vtable A

DSO B

got

vtable A

before relocation

after relocation

got got

vtable A

class A{
public:
 virtual void foo(){};
};

12

VIRTUAL INHERITANCE

• Virtually inherited objects have pointers to address base
objects

• How those pointers are implemented is not defined by the
C++ standard

•On Linux the ABI requires them to be implemented as offsets

‣ no issue

13

CONCLUSION

• A slow, costly but portable solution would require a new layer of indirection

• The proposed workarounds may be non-portable but enable processes to share
objects without overheads and deep changes to the toolchain

• Proposed solution that requires a minimum amount of work:

‣ sharable classes have a key function

‣ an executable is dynamically linked to the libraries with the sharable vtables

‣ dynamic loading of libraries with sharable vtables is only allowed before forking

‣ the cooperating processes are forked

14

RESOURCES

• Boost Interprocess - http://www.boost.org

• C++, ISO/IEC 14882 International Standard

• System V ABI - http://www.sco.com/developers/gabi/latest/contents.html

• Itanium C++ ABI - http://sourcery.mentor.com/public/cxx-abi/abi.html

• Address Space Layout Randomization - http://en.wikipedia.org/wiki/Address_space_layout_randomization

• Prelink - http://people.redhat.com/jakub/prelink.pdf

• How To Write Shared Libraries - http://www.akkadia.org/drepper/dsohowto.pdf

• Executable and Linking Format (ELF) Specification - http://pdos.csail.mit.edu/6.828/2011/readings/elf.pdf

15

http://www.boost.org
http://www.boost.org
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://sourcery.mentor.com/public/cxx-abi/abi.html
http://sourcery.mentor.com/public/cxx-abi/abi.html
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://people.redhat.com/jakub/prelink.pdf
http://people.redhat.com/jakub/prelink.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://pdos.csail.mit.edu/6.828/2011/readings/elf.pdf
http://pdos.csail.mit.edu/6.828/2011/readings/elf.pdf

