
Discussion on
the Future
Hardware

Alfio Lazzaro
CERN openlab

Workshop on Concurrency in the many-core Era
Fermilab
November 22nd, 2011

Why parallelize?

q  Although parallelism is everywhere in the hardware, it is not clear
(to me) why the current model of “embarrassing” parallelism would
not scale in the future
§  Strong reason: reduce memory footprint?
§  Increase efficiency? (should we consider it a kind of optimization?)

q  Can we gain in performance?
§  I don’t think we are interested in strong scaling (go faster)…
§  We are more throughput-oriented, i.e. weak scaling (definitely no HPC)

q  Side effects? A lot…
§  Refactoring large portion of the code
§  Maintenance large parallel code (no trivial parallelism, like in HPC)
§  Several level of parallelism, require expertise in the community (hidden

parallelism?)
§  Reproducibility can be an issue…

q  The situation is evolving very rapidly. Should we wait?
2 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Hardware direction
q  Assuming that we are interested in x86-like CPUs, we can

consider three big families:
§  “Fat” cores

• Increase performance on a single core (Sandy Bridge gives ~10% more
performance for the same frequency)

• More and more cores will be available (8 cores in the Sandy Bridge @ 32nm,
10 in the next generation (2014?),…)

• Keep cache coherency

§  “Light” cores, e.g. mobile devices (Atom CPUs)
• Here ARM plays a major role though…
• Not clear roadmap from Intel

§  Specialized cores (accelerators), i.e. Intel MIC and GPUs
• Getting FLOPS more efficiently (at least 3x better)
• Target specific cases, but several limitations on the software and hardware
• Vendors are putting a lot of efforts on this sector. We can expect a lot of

developments in the short

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

7 dimensions: Software

4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

From Sverre Jarp presentation	

q  Look for improving everything
q  Situation

§  We don’t use Vectors
• Not easy to use in our code

§  We don’t use Superscalar
• ~0.5 instruction per cycle (4 is the

maximum)
§  Pipelining easy to break in complex

C++ applications
§  We don’t use SMT (2 threads per core,

test shows +20% performance)
§  We would like to use Multi-core and

Multi-socket
•  Cache and memory access (NUMA) problems
•  Thread safety
•  …

§  We are not interested in multiple
nodes parallelism (a la MPI)

7 dimensions: Hardware

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

From Sverre Jarp presentation	

q  Increase in dimension of vectors:
§  AVX, 256 bits (4 doubles SIMD)
§  MIC, 512 bits
§  Expected to increase in the future

q  SMT can be an efficient solution to hidden
latency to memory
§  2 threads on XEON
§  4 threads on MIC
§  Several (>10) on GPUs
§  Can increase (?)

q  More and more cores, sharing part of the
resources on the chip

q  Multi-socket
§  2 or 4, can increase

q  Multiple nodes on the same chassis
§  Micro-server: several independent nodes

q  Accelerators can be considered a new
dimension

q  An interesting feature is the Turbo mode
(Intel and now AMD):
§  increase clock frequency when not full loaded
§  Reduce Amdhal’s law effect!

Looking in the future: Heterogeneous systems

q  All systems give the best performance for specific tasks
§  There is not a unique system which is suitable for everything!

q  It is a common understanding that future systems for computation will be
a “heterogeneous” systems, where each sub-system will properly perform
its part of execution

6 Alfio Lazzaro (alfio.lazzaro@cern.ch)

HP
CPU

Core 1

Core n

…
 LP

GPU

Socket 1

HP
CPU

Core 1

Core n

…
 LP

GPU

Socket s

…

LP CPUs

Accelerators

HP GPUs

…

FPGAs

?

HP = High Performance; LP = Low Performance

Looking in the future
q  Depends how far we go…
q  At least for other 5 (?) years the number of cores and the overall performance per

chip will increase
§  However this model cannot give us exascale systems

q  Accelerators are expected to play a major role
§  Scaring scenario: no more cores on the chip, but investing on the accelerators on the die

(reduce movement of the data)
•  Intel Sandy Bridge has an integrated GPU
•  AMD has Fusion
•  NVIDIA is working with ARM

§  This open to heterogeneous cores
q  HPC rule: whatever will be better to use we will use it

§  Exascale systems expected by 2018-2020
•  A factor 100x in performance, with the same power consumption as it is now!

q  However we are not HPC! We don’t need FLOPs in few kernels (e.g. Algebra)
§  Our application can be considered “real-life” applications

q  In any case heterogeneous systems will be there
§  Cores will be not an issue! Entering in “Cores for free”-era

7 Alfio Lazzaro (alfio.lazzaro@cern.ch)

We are not alone

q  Several projects on how to parallelize “real” applications on
heterogeneous systems
§  Provide tools for auto-tuning, checking and profiling
§  High level and not invasive changes in the code, e.g. using directives
§  Incremental parallelism

q  All vendors are moving in this direction:
§  Nobody thinks that a world of MPI+OpenMP+CUDA (which is the common

situation in HPC) will be affordable in the long run even for HPC!
§  Intel is working on a very elegant integration of accelerators

• MIC is a x86-64 compatible
§  PGI, Cray, CAPS and NVIDIA are working on a new product OpenACC
§  OpenMP 4.0

q  It is reasonable to think that some techniques used now will
become low-level in the next future
§  Like programming in assembly nowadays
§  Compiler and JIT tools

8 Alfio Lazzaro (alfio.lazzaro@cern.ch)

http://paraphrase-ict.eu/

9 Alfio Lazzaro (alfio.lazzaro@cern.ch)

http://cordis.europa.eu/fetch?
CALLER=PROJ_ICT&ACTION=D&CAT=PROJ&RCN=99932

10 Alfio Lazzaro (alfio.lazzaro@cern.ch)

http://www.bsc.es/plantillaG.php?cat_id=385

11 Alfio Lazzaro (alfio.lazzaro@cern.ch)

SMP superscalar	

Spain projects (BCS)	

Other links
q  Interesting reading by Victor Pankratius, KIT, German (http://

www.victorpankratius.com/)
§  http://www.rz.uni-karlsruhe.de/~kb95/papers/Pankratius-

SoftwareEngineeringInTheEraOfParallelism.pdf

Victor Pankratius, Ali Jannesari,
Walter F. Tichy. IEEE Software 26(6),
pp. 70-77, Nov.-Dec. 2009,
ISSN: 0740-7459,
DOI: 10.1109/MS.2009.183

12 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelizing BZip2

A Case Study in Multicore Software Engineering

Victor Pankratius
University of Karlsruhe

76131 Karlsruhe, Germany
pankratius@ipd.uka.de

Ali Jannesari
University of Karlsruhe

76131 Karlsruhe, Germany
jannesari@ipd.uka.de

Walter F. Tichy
University of Karlsruhe

76131 Karlsruhe, Germany
tichy@ipd.uka.de

ABSTRACT
This paper presents a case study on parallelizing the sequen-
tial version of the BZip2 compression program for usage on
multicore computers. We describe the encountered software
engineering problems, discuss the tradeoffs of different par-
allelization strategies, and present empirical performance re-
sults.

The study was conducted during the last three weeks of a
multicore software engineering course. Eight students, work-
ing in teams of two, were assigned the task to parallelize
BZip2 in a team competition. Before starting with BZip2,
all students had three months of extensive training in par-
allelization with POSIX threads and OpenMP, as well as
knowledge of profiling strategies and tools.

Our empirical findings show that considerable speedups
can be gained by exploiting parallelism on higher abstraction
levels through parallel patterns, which are more significant
than speedups obtained from a fine-granular parallelization.
Another key issue we identify is the systematic refactoring of
existing sequential code to prepare it for parallelization; the
time needed for such refactorings can be significantly longer
than for the actual insertion of parallelization constructs.
The team who mastered these tasks well won the contest
with a speedup above 10 on an eight-core SUN Niagara T1,
while the weakest team produced a parallel version that was
even slower than the sequential one.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.0 [Software Engineer-
ing]: [General]

Keywords
multicore systems, bzip, concurrency, synchronization, pat-
terns, OpenMP, POSIX

University of Karlsruhe, Germany
Technical Report 2008-11
Institute for Program Structures and Data Organization (IPD)
First published: April 2008, updated December 2008
A modified version of this report will appear in IEEE Software Magazine

1. INTRODUCTION
With the emergence of affordable multicore processors

that integrate several computing cores on a single chip, par-
allel programming becomes a concern for more developers
than ever before. Despite the existing body of paralleliza-
tion knowledge in scientific computing, numerics, operating
systems, or databases, we still have many application areas
in everyday computing that were not attractive for paral-
lelization so far. Consequently, the software engineering of
such applications also did not receive much attention. How-
ever, we are now at an inflection point where this is changing,
as ordinary users possess multicore computers and demand
software that exploits the full hardware potential. Unfor-
tunately, previous empirical studies often focused on the
mentioned areas, on architectures not comparable to cur-
rent multicore systems, or on selected algorithms [13, 8, 7].

We now have a new situation where parallelism need no
longer be confined to a narrow application range, but be em-
ployed in many different types of applications that are used
in everyday life. We thus need to improve the software engi-
neering for multicore applications and fill the existing gaps.
One important building block for systematic engineering are
empirical case studies that investigate in detail which paral-
lelization approaches work and which do not work for certain
applications. This must be complemented by an analysis of
the reasons for success or failure of parallelization, along
with an identification of the issues that require further re-
search.

This paper addresses at this point and presents an empir-
ical case study of the parallelization of the sequential BZip2
compression program [12]. This program was chosen for sev-
eral reasons: it is widely used, it is a real application that is
relevant in everyday life, the source code is available as open
source, and the functioning principles are well-documented.
In addition, the algorithms are not trivial and the size of
the available code is just large enough to be manageable for
students in an extended course exercise.

The parallelization of BZip2 was done as a 3-week course
exercise at the end of a multicore software engineering course,
after all students had three months of intensive training in
parallelism. Eight students, working in teams of two since
the beginning of the course, were assigned the parallelization
task as a competition. We chose to conduct the study this
way because we expected a larger diversity of solutions that
would help triangulate the relevant engineering issues. To
make the study more realistic, we set a 3-week time frame
and allowed the students to pursue any strategy they con-
sidered promising, use any tools or languages they wanted,

tally enclosing some portions with parallelization constructs
may not yield acceptable performance in the long run. More-
over, this approach does not seem to be scalable due to the
required refactoring effort.

Another industry trend is to offer parallel libraries for mul-
ticore. However, this study shows that in certain contexts,
just exchanging library calls with parallel implementations
might not yield acceptable performance. Other approaches,
such as patterns (cf. Sect. 6.1) appear to be more promising.

Suggestions for improvement: If these experiences are
made also in other studies, we must fundamentally rethink
our approach to parallelization for general-purpose applica-
tions. In particular, parallelization on several abstraction
levels and refactoring must be addressed.

6.6 Educational Aspects
The topics and tools that were taught in the course are

standard in parallel programming. The students did not
have many difficulties while they worked on the classroom
exercises. In addition, they were familiar with software en-
gineering techniques.

However, things changed when the larger BZip2 program
had to be parallelized. Despite extensive training in par-
allelization, the results of the teams varied greatly. The
students said that there was a difference between paralleliz-
ing small “toy” programs and real-world applications. Many
concepts, such as loop parallelization or data partitioning
could not be applied right way. Not only was BZip2 more
complex, but it was also heavily optimized for sequential
performance, making parallelization a difficult task.

Suggestions for improvement: As future software engi-
neers will be confronted with the parallelization of real-world
applications, we need to prepare them adequately and ad-
dress parallelization in computer science curricula. We ob-
viously need to extend the repertoire of available techniques
and tools that we teach. In addition, combining techniques
from different field of computer science (e.g., covering par-
allel programming and software engineering) is unavoidable.
From a practical point of view, case studies in parallelizing
real-world programs are a suitable vehicle to train the skills
needed in every-day situations, and at the same time gain
valuable insights for research.

7. THREATS TO VALIDITY
Within our course, all students had the same paralleliza-

tion training before the BZip project started. However, in-
dividual skills could have influenced the results. To be sure
that this case study was not dominated by such effects, we
asked all students about other courses or labs they have
taken before in the area of software engineering or paral-
lelism. We found out that all of them had a similar expe-
rience. In addition, the skill levels we observed throughout
the course were comparable – no student performed signifi-
cantly worse than others. This is objectively backed by the
fact that all students passed all assignments.

Some of the teams did not log their activities accurately
enough. Team 4 could not give accurate effort numbers
due to their trial-and-error approach, but provided estimates
when asked during the interview. We checked the numbers
reported by all teams for plausibility, based on the delivered
code, comparisons between teams, and our own experience
from parallelizing BZip in a feasibility study.

This case study can’t be representative for all multicore
software in general; it aims to present our experience with
parallelizing a real program and develop an understanding
for similar problems in practice.

8. CONCLUSION
In order to exploit the potential of current multicore hard-

ware, applications of all sorts need to be parallelized. How-
ever, we are currently lacking empirical results in the area
of multicore software engineering. This case study adds a
piece to the body of knowledge and reports on the experience
gained from the parallelization of a compression program.

A remarkable result is that many of the key activities for
successful parallelization are software engineering activities
beyond “mere programming”. This claim is supported by
several clues. Parallelization on higher abstraction levels
using patterns improved speedups. Contrary to our initial
expectations, this aspect was even more important here than
more fine-granular parallelizations on an algorithmic level
or loop-level. Moreover, just exchanging calls to sequen-
tial library functions with calls to parallel counterparts did
not produce acceptable speedups, as the structure of the
sequential program was highly optimized for sequential exe-
cution and acted like a tight corset. Parallelization on higher
abstraction levels help to break through such barriers, and
might become even more important when large applications
– with millions of lines of code – are parallelized. Further-
more, a careful preparation of the sequential code for paral-
lelization through refactoring was indispensable and repre-
sented another key factor to success.

Many of the engineering aspects for parallel software that
were touched in this study are largely neglected at the mo-
ment. Research must fill these gaps quickly if multicore
programming is to be successful on a large scale.

Acknowledgements
We would like to thank our student assistant Kai-Bin Bao,
and the course students for their support.

9. REFERENCES
[1] BZIP2SMP v. 1.0. http://bzip2smp.sourceforge.net/,

December 2 2005. last accessed August, 2008.
[2] Eclipse. http://www.eclipse.org/downloads/, Fall

2007. last accessed August, 2008.
[3] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K.

Wei. A locally adaptive data compression scheme.
Commun. ACM, 29(4):320–330, 1986.

[4] M. Burrows and D. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, Systems Research
Center, Palo Alto, California, May 10 1994.

[5] J. Fenlason and R. Stallman. GNU gprof.
http://www.gnu.org/software/binutils/, 2008. last
accessed August, 2008.

[6] J. Gilchrist. Parallel BZIP2 v 1.0.2.
http://compression.ca/pbzip2/, July 25 2007. last
accessed August, 2008.

[7] L. Hochstein and V. R. Basili. The asc-alliance
projects: A case study of large-scale parallel scientific
code development. Computer, 41(3):50–58, 2008.

How we can proceed?
q  Look for high level parallelism (a la Intel CnC)

§  Processes and tasks
§  Thread-safety

q  Work on tools
§  Apply incremental parallelism

q  Collaboration with other projects
§  We need to think in the “future”
§  Develop tools to check correctness or auto-parallelization

q  Extract some part of the code and work on it
§  At the beginning we should not consider optimization and efficiency
§  It can be that parallelization will introduce overhead, but this is the winning solution in the long

run (cores are for free)

q  Accelerators can play a role in our code only in the second phase
q  Need to focus on specific problems

§  Debugging
§  Correctness
§  Specific algorithms (log, I/O, loop parallelism, task parallelism, random numbers, data

structures…)

13 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Credits to xkcd 	

How we can proceed?

q  The current situations seems to require the development
of two versions of the code
§  Sequential for production and checking
§  Parallel for developments
§  Can we keep this situation in the long run?

•  The two versions can diverge at some point, so it would require doubling the work

q  Moreover: keep the physics involved!
§  I think this is the critical point, unless everything works out of the

box in a parallel world (at the moment we cannot guaranteed that
in a much easier sequential world)

14 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Conclusion

q  My hope is that the answer to the initial question “Why
parallelize?” will be “For doing more work”
§  I don’t think it is easy to convince someone that we need to

parallelize the code as it is now, since it is working!
• We should clarify the goal in the long run, i.e. what the experiments want

§  Which new workload can be added by the experiments in the long
run?

• Better tracking, more complex algorithms, pileup…?
• Increase collisions rate by LHC? (see HiLumi project, http://indico.cern.ch/

conferenceDisplay.py?confId=150474)

15 Alfio Lazzaro (alfio.lazzaro@cern.ch)

