
Experiences Running Athena and
Gaudi with Multiple Threads

Charles Leggett

Gaudi / Athena Framework

 Persistent
Storage

User
Configuration

Files

AlgorithmsAlgorithmsAlgorithm

Configuration
Manager

initialize()

execute()

finalize()

Transient
Data Store

External
Libraries

Data
ConvertersDataObjects

DataObjects

Use

Use

Configure

ServicesServicesServices

User
Configuration

Files

User
Configuration

Files

A
p

p
lic

at
io

n
M

a
n

a
g

e
r

(s
ta

te
 m

ac
hi

ne
)

co
nf

ig
ur

e
| i

ni
tia

liz
e

| e
xe

cu
te

 (
n)

 |
fin

al
iz

e

Python
interface
interactive /

scriptable

DataObjects

3

Multi-Threading in Gaudi

• Hide multi-threading from algorithm developers
– process entire event in a single thread

• Use normal Gaudi naming convention of <type>/<name>
for Algorithms and Services with an appended _<thread#>
to distinguish between threads:
– HelloWorldAlg/MyHelloWorld_1

• All Services and Algorithms which modify data must be
thread specific

• Services that wish to share data between threads must be
declared at initialization

• Default is to make any automatically created Algorithm or
Service thread specific.

4

GaudiMT and AthenaMT

• GaudiExamples contains a trivial multi-threading example
GaudiMT
– replace main executable that spawns individual worker threads

after global configuration
– specify which services to be shared between threads as a job

property

• AthenaMT: Used by HLT level 2 trigger
– follows TDAQ state machine

 Mapping of Gaudi on LVL2PU FSM

Load

Config

Start

Stop

UnConfig

UnLoad

Worker Thread

LVL2PU FSM L2PU configure: initialize basic Gaudi framework
and configure/initialize all requested services and
algorithms.
 Configuration = jobOptions.py file
 for every thread an instance of a Gaudi "EventLoopMgr"

is created, configured and initialized. The
"EventLoopMgr" creates and configures then for its
thread all algorithms.

 for every thread all thread specific services are created
(specified in configuration)

 AppMgrconfigure(); AppMgrinitialize();

L2PU start: in each worker thread the following PESA
code is executed

 clear and initialize event store
 store Lvl1 result as root object of the event store
 EventLoopMgr__(threadID)executeEvent(Lvl1Res)

L2PU UnConfigure: finalize all PESA algorithms and
terminate Gaudi application manager.

 AppMgrfinalize(); AppMgrterminate();

6

Issues with Multi-Threading

• Non-thread safe code:
– objects shared between services/algorithms to “save” memory
– globals and statics

• Exception handling with threads
• STL implementations with different compiler versions,

especially with strings and allocators
– solved in more recent compilers (probably?)

• Non-thread safe external libraries

• Tools for debugging

• Users need to be aware of thread safe programming
• Use of shared objects in stores

7

Issues with Multi-Threading

• Initialization:
– AthenaMT called Initialize() on each thread separately

• very time inefficien

– really want to instantiate Algorithm in “mother”, initialize it, then
clone it in each worker thread

• Message passing and Incidents between threads
• Histogramming
• AlgTools: private vs public

– public shared between threads?

• Detector description (especially LAr) contained shared
objects that would be touched by different threads
– would normally want to have the Detector Description read only and

shared between threads

• Could make things work for one release, but would be
broken in next one

8

AthenaMP
• sharing done via copy-on-

write
• configuration/initialization

performed in mother,
workers start

• fast-merge of output on
finalize

• exceptions ok

• message passing /
incidents non-trivial

AthenaMT
• must decide a-priori what

to share between threads
• no mother process,

initialization occurs multiple
time

• post-finalize merging never
addressed

• exceptions not well
behaved

• message passing /
incidents non-trivial

• need to write thread-safe
code from the ground up

9

Future Prospects of Multi-Threading

• ATLAS abandoned multi-threading 4 years ago, for a
reason

• Adding multi-threading to Athena for any non-trivial job will
be very, very difficult, if it is to be “maintenance free”
between releases
– a large number of different packages will need to be fixed

• Users will have to be educated in writing thread-safe code

• Framework needs to be written from the ground up with
multi-threading / thread safety in mind

