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Multi-Threading in Gaudi

• Hide multi-threading from algorithm developers
– process entire event in a single thread

• Use normal Gaudi naming convention of <type>/<name> 
for Algorithms and Services with an appended _<thread#> 
to distinguish between threads:
– HelloWorldAlg/MyHelloWorld_1

• All Services and Algorithms which modify data must be 
thread specific

• Services that wish to share data between threads must be 
declared at initialization

• Default is to make any automatically created Algorithm or 
Service thread specific.
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GaudiMT and AthenaMT

• GaudiExamples contains a trivial multi-threading example 
GaudiMT
– replace main executable that spawns individual worker threads 

after global configuration
– specify which services to be shared between threads as a job 

property

• AthenaMT: Used by HLT level 2 trigger
– follows TDAQ state machine



 Mapping of Gaudi on LVL2PU FSM
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LVL2PU FSM   L2PU configure: initialize basic Gaudi framework 
and configure/initialize all requested services and 
algorithms.
 Configuration = jobOptions.py file
 for every thread an instance of a Gaudi "EventLoopMgr" 

is created, configured and initialized. The 
"EventLoopMgr" creates and configures then for its 
thread all algorithms. 

 for every thread all thread specific services are created 
(specified in configuration)

 AppMgrconfigure(); AppMgrinitialize();

L2PU start: in each worker thread the following PESA 
code is executed

 clear and initialize event store
 store Lvl1 result as root object of the event store
 EventLoopMgr__(threadID)executeEvent(Lvl1Res) 

L2PU UnConfigure: finalize all PESA algorithms and 
terminate Gaudi application manager.

       AppMgrfinalize(); AppMgrterminate();
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Issues with Multi-Threading

• Non-thread safe code:
– objects shared between services/algorithms to “save” memory
– globals and statics

• Exception handling with threads
• STL implementations with different compiler versions, 

especially with strings and allocators
– solved in more recent compilers (probably?)

• Non-thread safe external libraries

• Tools for debugging

• Users need to be aware of thread safe programming
• Use of shared objects in stores
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Issues with Multi-Threading

• Initialization: 
– AthenaMT called Initialize() on each thread separately

• very time inefficien

– really want to instantiate Algorithm in “mother”, initialize it, then 
clone it in each worker thread

• Message passing and Incidents between threads
• Histogramming
• AlgTools: private vs public

– public shared between threads?

• Detector description (especially LAr) contained shared 
objects that would be touched by different threads
– would normally want to have the Detector Description read only and 

shared between threads

• Could make things work for one release, but would be 
broken in next one
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AthenaMP
• sharing done via copy-on-

write
• configuration/initialization 

performed in mother, 
workers start

• fast-merge of output on 
finalize

• exceptions ok

• message passing / 
incidents non-trivial

AthenaMT
• must decide a-priori what 

to share between threads
• no mother process, 

initialization occurs multiple 
time

• post-finalize merging never 
addressed

• exceptions not well 
behaved

• message passing / 
incidents non-trivial

• need to write thread-safe 
code from the ground up
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Future Prospects of Multi-Threading

• ATLAS abandoned multi-threading 4 years ago, for a 
reason

• Adding multi-threading to Athena for any non-trivial job will 
be very, very difficult, if it is to be “maintenance free” 
between releases
– a large number of different packages will need to be fixed

• Users will have to be educated in writing thread-safe code

• Framework needs to be written from the ground up with 
multi-threading / thread safety in mind


