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Hardware Evolution: Transistors on a Chip
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Hardware Evolution: Clock Rate
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Hardware Evolution

There are limits to “automatic” improvement of
scalar performance:

1. The Power Wall: Clock frequency cannot be
increased without exceeding air cooling.

2. The Memory Wall: Access to data is a limiting
factor.

3. The ILP Wall: All the existing instruction-level
parallelism (ILP) is already being used.

— Conclusion: Explicit parallel mechanisms and explicit
parallel programming are required for performance
scaling.



Hardware Parallelism: Cores and
Threads
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Photo: desktop die with two cores disabled

Intel Sandy Bridge: 8 cores / 16 threads
AMD Interlagos: 8 cores / 16 threads



Cores per Socket

TOP500
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TOP500: Cores per Socket

kil 1 core

il 2 cores

.1 4 cores
i 6 cores
.l 8 cores
.19 cores
110 cores
1112 cores

.1 16 cores

500 systems total



More Cores: Cache Hierarchy
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Vector Parallelism: Register Width
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Vector Instruction sets e.g.: SSE4.x, AVX, FMA
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Key Factors

Compute: Parallelism

What mechanisms do processors provide for using
parallelism?

— Implicit: instruction pipelines, superscalar issues

— Explicit: cores, hyperthreads, vector units
 How to map potential parallelism to actual parallelism?
Data: Locality

How is data managed and accessed, and what are the
performance implications?

— Cache behavior, conflicts, sharing, coherency, (false) sharing;
alignments with cache lines, pages, vector lanes

— NUMA
* How to design algorithms that have good data locality?



Heterogeneous Computing
the GPU Rationale
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GPU capacity comparisons
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TOPS500: Accelerators
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Abstracted x64+ Nvidia Fermi Architecture
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GPU Architecture Features

Optimized for high degree of regular parallelism

Classically optimized for low precision

— Fermi supports double precision at %2 single precision
bandwidth

High bandwidth memory (Fermi supports ECC)
Highly multithreaded (slack parallelism)
Hardware thread scheduling

Non-coherent software-managed data caches
— Fermi has two-level hardware data cache

No multiprocessor memory model guarantees
— some guarantees with fence operations



Tesla-10 Features Summary

* Massively parallel thread processors

— Organized into multiprocessors
* up to 30, see deviceQuery or pgaccelinfo

— Physically: 8 thread processors per multiprocessor
— ISA: 32 threads per warp
— Logically: Thread block is quasi-SIMD

* Memory hierarchy

— host memory, device memory, constant memory,
shared memory, register

 Queue of operations (kernels) on device



Fermi (tesla-20) Features Summary

Massively parallel thread processors

— Organized into multiprocessors
e up to 16, see deviceQuery or pgaccelinfo

— Physically: two groups of 16 thread processors per
multiprocessor

— |ISA: still 32 threads per warp, dual issue for 32-bit code

Memory hierarchy

— host memory, device memory (two level hardware cache),
constant memory, (configurable) shared memory, register

Queue of operations (kernels) on device

ECC memory protection (supported, not default)
Much improved double precision performance
Hardware 32-bit integer multiply



Parallel Programming on CPUs

Instruction level parallelism (ILP)
— Loop unrolling, instruction scheduling

Vector parallelism
— Vectorized loops (or vector intrinsics)

Thread level / Multiprocessor / multicore parallelism
— Parallel loops, parallel tasks
— Posix threads, OpenMP, Cilk, TBB, .....

Large scale cluster / multicomputer parallelism

— MPI (& HPF, co-array Fortran, UPC, Titanium, X10, Fortress,
Chapel)



Parallel Programming on GPUs

* |nstruction level parallelism (ILP)
— Loop unrolling, instruction scheduling

* Vector parallelism
— CUDA Thread Blocks, OpenCL Work Groups

* Thread level / Multiprocessor / multicore
parallelism
— CUDA Grid, OpenCL



