Hardware Trends in HPC

A Report from SC2011

Credits

These slides were extracted from tutorials and
technical presentations at SC2011. Copyrights
retained by the original authors.

Michael McCool, Arch Robinson and James
Reinders from Intel Software to appear in the

book “Structured Parallel Programming Using
Intel” Parallel Building Blocks”.

Michael Wolfe, Portland Group
Jeffrey Vetter, Georgia Tech and ORNL

Hardware Evolution: Transistors on a Chip

10000 Processor Transistor Counts
L K
1000 GL
A
JW\:,V-‘
W NG ’i_/
100 vw a0
w JV - () o O
N
10 N %o

1 million transistors

0.1
Moore’s Law continues:
0.01 Doubling of transistor density
every two years

0.001
1970 1975 1980 1985 1990 1995 2000 2005 2010

Hardware Evolution: Clock Rate

Processor Clock Rates

10
1 GHz
0.1 c
] 3)
I
[~
- d
0.01 —
- (|
. Clock rate plateau:
. Since about 2004, clock
0.001 - rate growth has been flat.
0.0001
1970 1975 1980 1985 1990 1995 2000 2005 2010

Hardware Evolution

There are limits to “automatic” improvement of
scalar performance:

1. The Power Wall: Clock frequency cannot be
increased without exceeding air cooling.

2. The Memory Wall: Access to data is a limiting
factor.

3. The ILP Wall: All the existing instruction-level
parallelism (ILP) is already being used.

— Conclusion: Explicit parallel mechanisms and explicit
parallel programming are required for performance
scaling.

Hardware Parallelism: Cores and
Threads

21 Processor Core and Thread Counts

20

19

18 Threads

17

16 M Cores

15

14 .

13 Parallelism growth:

12 Number of hardware threads

11 (cores and hyperthreads) has been

18 growing dramatically since 2002.
8 W,
7
6 = 3
5
g AT
2 L
1 - EE BE e =S l_

1970 1975 1980 1985 1990 1995 2000 ‘2605 2010

InteISandy Brldge

= Shared -

g = L3 Cache i

m'.—ﬁa—.

TCTiiarIiiic: SESifiat ERiriwE SERiEsSE Raraerar e e
'ml,ﬁ&”}r.‘v_'_t_""‘h?.r: =, w,rr t'RS-S.J. Mt,e,——,—

.._..I.-.w oi o

! { { 3 '
- i o .;_A-J.‘,‘,. & BEESEuRs Sans i 5
e |

,. e et S D e e
AL L > . = Y e

- e S :

v ’

--r*-‘———--" i et

&1‘; ‘ﬁ-! T AT I T R T R A R AR R T SRS T

Photo: desktop die with two cores disabled

Intel Sandy Bridge: 8 cores / 16 threads
AMD Interlagos: 8 cores / 16 threads

Cores per Socket

TOP500

500
450
400

-116
12
=110

350

=9
8

o O O
o un O
Mm AN N

swidlsAs

6

o
LN
i

4

100

2

50

1

110¢

0T10¢

600¢

800¢

£00¢

900¢

S00¢

00¢

€00¢

¢00¢

TOP500: Cores per Socket

kil 1 core

il 2 cores

.1 4 cores
i 6 cores
.l 8 cores
.19 cores
110 cores
1112 cores

.1 16 cores

500 systems total

More Cores: Cache Hierarchy

9

Vector Parallelism: Register Width

512

256

128

64

32

16

1976

H

1980

1984

Parallelism growth:
Width of registers has also been
growing dramatically over time.

1988
1992
1996
2000
2004
2008
2012

Vector Instruction sets e.g.: SSE4.x, AVX, FMA

Ty

pical System Architecture

Proc Proc

Mem

‘IIII‘ ‘IIII‘
| [m— —

Cache hierarchy

Mem Proc I Proc l Mem N U MA
PCle Bus ¢
NIC i coProc i Mem DC i Disk
060000 |
6060060
8660606

>

Heterogeneous (GPU) computing »

Key Factors

Compute: Parallelism

What mechanisms do processors provide for using
parallelism?

— Implicit: instruction pipelines, superscalar issues

— Explicit: cores, hyperthreads, vector units
 How to map potential parallelism to actual parallelism?
Data: Locality

How is data managed and accessed, and what are the
performance implications?

— Cache behavior, conflicts, sharing, coherency, (false) sharing;
alignments with cache lines, pages, vector lanes

— NUMA
* How to design algorithms that have good data locality?

Heterogeneous Computing
the GPU Rationale

Very High
Memory
Bandwidth

Leverage
commodity

l

eliability at
Scale

Heterogeneous
Computing
with Graphics
Processors

14

GPU capacity comparisons

Performance Per MFLOP Performance Per Watt

AR 48R R R
AR AR
AR ER

BEBEE
dda.
BBERE

Z
z

Performance Per $

Gl AR AR LR LR LR L
Al LR LR LR L8 LR LR
Gl AR AR R LR LR LR
i LR LR LR LR AR R
AR 4R AR AR AR AR Ln
4G LR &R LR L0 AR A
AR LR AR LR LD AR Ln
Al 4R &R LR AR AR La
Al AR &R B AR AR LR
AR LR AR AR LR AR LR

TOPS500: Accelerators

12,000
— 10000 1 Clearspeed CSX600
= I ATI GPU
O
E 8,000 il |IBM PowerXCell 8i
g I NVIDIA 20702
é 6,000 u NVIDIA 2090
S NVIDIA 2050
S 4,000
e
2 2,000
0 —
© A
Q S
% %

Abstracted x64+ Nvidia Fermi Architecture

17

P
CPU
.
v
e
Host
Memory
.

©2010 The Portland Group, Inc.

Execution Queue

)

Control I
AL 4

Dual Warp Issue [Dual Warp Issue] Dual Warp Issue
vy 0 3 v+ 1 _3 3

4

o

A

]

S

Q.

el

(3]

g

<=

=
Special Special Special Special Special Special
Function Function Function Function Function Function
Unit Unit Unit Unit Unit Unit
HW User SW HW User SW HW User SW
Cache Selectable Cache Cache Selectable Cache Cache Selectable Cache

1

{

1

Level 2 Cache

¥

¥

{

DMA

Device Memory

B

GPU Architecture Features

Optimized for high degree of regular parallelism

Classically optimized for low precision

— Fermi supports double precision at %2 single precision
bandwidth

High bandwidth memory (Fermi supports ECC)
Highly multithreaded (slack parallelism)
Hardware thread scheduling

Non-coherent software-managed data caches
— Fermi has two-level hardware data cache

No multiprocessor memory model guarantees
— some guarantees with fence operations

Tesla-10 Features Summary

* Massively parallel thread processors

— Organized into multiprocessors
* up to 30, see deviceQuery or pgaccelinfo

— Physically: 8 thread processors per multiprocessor
— ISA: 32 threads per warp
— Logically: Thread block is quasi-SIMD

* Memory hierarchy

— host memory, device memory, constant memory,
shared memory, register

 Queue of operations (kernels) on device

Fermi (tesla-20) Features Summary

Massively parallel thread processors

— Organized into multiprocessors
e up to 16, see deviceQuery or pgaccelinfo

— Physically: two groups of 16 thread processors per
multiprocessor

— |ISA: still 32 threads per warp, dual issue for 32-bit code

Memory hierarchy

— host memory, device memory (two level hardware cache),
constant memory, (configurable) shared memory, register

Queue of operations (kernels) on device

ECC memory protection (supported, not default)
Much improved double precision performance
Hardware 32-bit integer multiply

Parallel Programming on CPUs

Instruction level parallelism (ILP)
— Loop unrolling, instruction scheduling

Vector parallelism
— Vectorized loops (or vector intrinsics)

Thread level / Multiprocessor / multicore parallelism
— Parallel loops, parallel tasks
— Posix threads, OpenMP, Cilk, TBB,

Large scale cluster / multicomputer parallelism

— MPI (& HPF, co-array Fortran, UPC, Titanium, X10, Fortress,
Chapel)

Parallel Programming on GPUs

* |nstruction level parallelism (ILP)
— Loop unrolling, instruction scheduling

* Vector parallelism
— CUDA Thread Blocks, OpenCL Work Groups

* Thread level / Multiprocessor / multicore
parallelism
— CUDA Grid, OpenCL

