
I/O aspects for parallel event processing

frameworks

Workshop on Concurrency in the many-Cores Era

Peter van Gemmeren (Argonne/ATLAS)

Outline

 AthenMP

 Input / Output considerations:

– What’s bad now, waste wall, CPU, memory and disk

 Developments:

– Scatter

– Input format

11/21/2011
2

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

AthenaMP: The ATLAS multi-core Control

framework

 In initial AthenaMP implementation, I/O is somewhat of an afterthought

– Each worker node produces its own output file, which need to be merged after all
worker are done.

– Done in serial, can take significant amount of wall clock time.

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

3

init fork Collect
&

merge

bootstrap

bootstrap

bootstrap

bootstrap

parallel event processing

This is not a yet a multi-core I/O framework!

 Read data: A process (initialization, event execute,…) reads part of the input file
(e.g., to retrieve one event).

– All worker use the same input file.

• Multiple access may mean poor read performance, especially if events are not consecutive.

 Uncompress / Stream ROOT baskets: Each worker will retrieve its own event data,
which means reading multiple ROOT baskets, uncompressing them and streaming
them into persistent objects.

– ROOT baskets contain object member of several events, so multiple worker may use the
same baskets and each of them will uncompress them independently:

• Wastes CPU time (multiple uncompress of the same data)

• Wastes memory (multiple copies of the same Basket, not shared)

 Write data: Each process writes its own output file, which need to be merged.

 Compress / Stream to ROOT baskets: Writers compress data separately.

– Suboptimal compression factor (costs storage and CPU time at subsequent reads)

• Wastes memory (each worker needs its own set of output buffer)

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

4

The Result: Control framework is only one side of

the coin…

 Each process writes its own
output file, which need to
be merged.

 Which is done in serial and
can kill you.

 Previous Tier0 tests of
athenaMP found 50% event
throughput reduction
mainly caused by serial
merge

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

5

Plot stolen from
V. Tsulaia

Need to develop multi-core I/O framework

 Input:

– Event/Object Scatter by dedicated Reader Process:

– Possible approaches:

• Event retrieve:

– The single reader, reads all data for many events, and assembles ‘persistent events’.

– The reader provides these events to the worker via shared memory.

• Object level retrieve:

– A single reader, reads all DataHeader and provides these to the worker via a queue.

– Using AthenaPOOL/StoreGate object retrieval mechanism, a request is send to a reader.

– The reader reads the persistent data object and sends it to the worker.

 The simplest implementation is for RAW data

– No real gain expected, but good exercise

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

6

Current AthenaMP Architecture for reading

ByteStream (RAW) in event queue mode

 Event scheduling is managed by the mother process using a python MP queue with event numbers for workers to iterate
over.

 I/O is done by worker, which first seek and than read the scheduled event

 File access is almost sorted
– only when one worker passes another in the seek to next step, things get out of order. Can happen, but not often

11/21/2011
7

Input File
Input File

Event# Queue

Mother Process Worker
Process

seek

Worker
Process

seek

Worker
Process

seek

1,2,3,4,…

1,7,9, … 2,4,8, … 3,5,6, …

Input Files

iter iter iter

1,7,9, … 2,4,8, … 3,5,6, …

next next next

Almost 1,2,3,4,…

Individual
ByteStream

I/O components

Shared event process
scheduling (python MP)

Individual disk read

On File Transition,
each Worker fires
and handles incidents
for metadata.

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

Alternative: Architecture for sharing ByteStream

events in queue mode, no metadata yet

11/21/2011
8

Event# Queue

Mother Process Worker
Process

lock

Worker
Process

lock

Worker
Process

lock

1,2,3,4,…

1,7,9, … 2,4,8, … 3,5,6, …

iter iter iter

1,7,9, … 2,4,8, … 3,5,6, …

next next next

Almost 1,2,3,4,…

Individual
ByteStream

O components

Shared event process
scheduling (python MP)

Reader
Process

lock next

Shared Memory Persistency
event/object Store

read

unlock

Input File
Input File Input Files

Only the Reader sees
File Transition, and
needs to inform
Workers to process
metadata.

Copy Metadata to store and inform Workers.

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

evtSeqNumber;
evtStatus;

evtSize;
evtOffset;
evtTerm1;
evtTerm2;

Detect File
Transition
and read
Metadata
from store.

Sequence Diagram for RAW sharing

Worker
Process

Reader
Process

IEventShare
EventSelector

share(evtnum)

SharedMemory
Tool

lockEvent(evtnum)

readEvent()

putEvent(num)

evtNum == num

getLockedEvent()
next()

putEvent(num)

evtNum == num

getLockedEvent()
next()

unlockEvent()

unlockEvent()

loop
[events]

This is faster, the
worker does not
read the event
from disk, but
copies it from

shared memory
store.

Worker
processing

events (> 10 s).

Reader reading
events (~ 0.1 s).

Reader waiting.
That’s OK.

Worker waiting.
Not good.

11/21/2011
9

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

Some Testing

 Some initial performance testing:

– No differences seen (or really expected) for up to 8 Workers.

• But no penalty was observed either, which may be a surprise for a ‘proof of concept’
implementation that is not optimized

– Small (~5%) slowdown with 16 Workers and single Reader.

• Single reader does get congested as it is currently only pre-reading 1 event

 Could easily extend framework to allow multiple dedicated Reader Processes
assigned to provide events to groups of Workers

 And of course, metadata handling requires special attention…

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

10

Second leg: Parallel ‘chunked’ access to ROOT

input files.

 ROOT baskets contain object member of several events, so multiple worker may
use the same baskets and each of them will uncompress them independently:

– Wastes CPU time (multiple uncompress of the same data)

– Wastes memory (multiple copies of the same Basket, not shared)

 Small test showed that reading (disk, decompress, streaming, P->T) ESD via
athenaMP on 4 cores takes 40% longer than in a serial job.

 In rel. 17, ATLAS changed ROOT data layout (see
https://indico.fnal.gov/conferenceDisplay.py?confId=4862):

– No splitting (fewer baskets)

– AutoFlush every 5/10 events (depending on data product)

 Allows athenaMP to schedule small ‘chunks’ of events and avoid double
decompression.

– Test reading ESD on 4 cores showed penalty reduced to less than 20%.

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

11

https://indico.fnal.gov/conferenceDisplay.py?confId=4862

Outlook

 Output of course is just as important

– Bought some time by moving to fast/hybrid merging

 ROOT team is developing TMemFile which may help

– But ATLAS needs externalized references to TTree entries.

 Shared Writer will have more difficult scheduling

– Doesn’t know when it is done

 Plan to exercise with ByteStream events first.

 Longer term, ATLAS may want to scatter objects (rather than events) to match
retrieval granularity on derived data products

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

12

Summary

 Don’t just plan for the next Control Framework, consider the next I/O Framework
to support it as well.

11/21/2011

Peter van Gemmeren (Argonne/ATLAS): I/O aspects for parallel event processing frameworks

13

