EF08: Model Specific Explorations

Elliot Lipeles (UPenn)
Nausheen Shah (Wayne State)
Jim Hirschauer (FNAL)

Outline

- Restarting and schedule
- MC simulation
- Thinking ahead about topical group report plots

Restarting

Restart of Snowmass Energy Frontier Officially July 1st

- Resumption of EF08 meetings: currently today (July 8th) and July 22nd,
 22nd both from I2-Ipm EDT.
- May add one in August but timing is difficult.
- Will probably survey for setting times for Sept +

Energy Frontier Restart Workshop

- https://indico.fnal.gov/event/49756/
- Aug 30th Sept 3rd (virtual), 10:00 am-4:30 pm (US Eastern) with lunch and "coffee" break

EF08 Short term goals

- Identify progress made:
- MC production needs (let's not wait until it's too late)
- Consolidate our understanding of what people plan to provide and how it might fit in, identify gaps, etc.
- For all three of above please fill in form: https://forms.gle/qdg/5k35rqu9gusw9

Snowmass Timeline

7/1/21	7/12-14/21	EF	3/15/22	5/31/22	6/30/22	7/22	9/30/22	10/31/22
Restart	DPF	workshop	Deadline	Preliminary	Preliminary	Community	Final	Snowmass
of activities	Meeting	Aug-Sep	Contribute	TG	Frontier	Summer	Reports	Book &
	Snowmass	'21	d Papers	Reports	Reports	Study		online
	Townhall	+				(UW-Seattle)		archive
		Additional						docs
		workshops						
		(Dec 21 -						
		Mar 22)						

Upcoming events

- DPF July 12-14:Town Hall Meeting on July 14 on Snowmass updates
- Energy Frontier Restart Workshop, Aug 30th Sept 3rd (virtual)
 - EF08 parallel session currently planned for Thursday 10am-12pm EDT
 - But of course the point of the workshop is to thinking across the sub-groups
- Expect a "status/progress" workshop in ~December
- Expect a TG report workshop late March (to assess what to include in the topical group report)

MC: my understanding

Energy Frontier MC group is active and is preparing a lot of resources for use by the topical groups

- But if we don't give them input it's our fault if we don't get what we need
- https://snowmass2l.org/montecarlo/energy has getting started and info on plans
- Not everything is easy to find yet, so here is my understanding

MC strategy

- MC group will make large hadron collider bkg samples "proactively"
 - I.e. they will use past needs to build a list of likely requests (later slide) and make large samples
- MC group will make other collider samples "reactively"
 - Smaller CPU requirements means less planning needed
- Groups need make their own signal samples, but can use OSG resources see https://snowmass2l.org/montecarlo/energy to generate and share
 - We might want to try to coordinate mode choices and samples in EF08
 ... discuss?

MC: my understanding

Energy Frontier MC group is active and is preparing a lot of resources for use by the topical groups

- But if we don't give them input it's our fault if we don't get what we need
- https://snowmass21.org/montecarlo/energy has getting started and info on plans (see here also:
 - https://indico.fnal.gov/event/44870/contributions/198448/attachments/136 004/168905/Stupak_100720_SnowmassEFMCTF.pdf)
- Not everything is easy to find yet, so here is my understanding

MC strategy

- MC group will make large hadron collider bkg samples "proactively"
 - I.e. they will use past needs to build a list of likely requests (later slide) and make large samples
- MC group will make other collider samples "reactively"
 - Smaller CPU requirements means less planning needed
- Groups need make their own signal samples, but can use OSG resources see https://snowmass2l.org/montecarlo/energy to generate and share
 - We might want to try to coordinate mode choices and samples in EF08
 ... discuss?

Collider Configuration and Energies Planned

Circular colliders merged

• put all others left ~as is

Machine				Energy			
Circular ee	m_Z	2m _W	240	2m _t			
ILC	250	350	500	1000			GeV
CLIC					1500	3000	
HL-LHC/FCC-hh	14	75	100	150			
LHeC/FCC-eh	1.3	3.5					TeV
μμ	3	10	14	30			

Delphes cards for all configurations on EF MC page

No full simulation (left up to collaborations)

Hadron Collider Background Samples Planned

Follows 2013 list

- https://arxiv.org/pdf/1309.1057.pdf
- There is a request form on the MC page if you need others

Dataset name	Physics process	Number of recoil jets
B-4p	γ or on-shell W,Z	0
$_{ m Bj-4p}$	γ or on-shell W,Z	1-3
Bjj-vbf-4p	γ or off-shell W,Z,H in VBF topology	2-3
BB-4p	Diboson (γ, W, Z) processes	0-2
BBB-4p	Tri-boson (γ, W, Z) processes including BH	0-1
LL-4p	Non-resonant dileptons (including neutrinos) with $m_{ll}>20~{\rm GeV}$	0-2
LLB-4p	Non-resonant dileptons with an on-shell boson, $m_{ll} > 20 \text{ GeV}$	0-1
H-4p	Higgs	0-3
tj-4p	Single top (s- and t-channel)	0-2
$\mathrm{tB} ext{-}4\mathrm{p}$	Single top associated with a boson	0-2
tt-4p	$tar{t}$ pair production	0-2
${ m ttB-4p}$	$t\bar{t}$ associated with γ, W, Z, H	0-1

Table 1-2. Table of background processes. All processes include the particles in the dataset name plus additional recoil jets up to four generated particles. On-shell vector bosons, off-shell dileptons, Higgs bosons, top quarks, and jets are denoted B, LL, H, t, and j, respectively. In the Bjj-vbf-4p case, B includes Higgs. In the BBB-4p case, BBB includes BH. Samples are generated in bins of H_T^* for $\sqrt{s} = 14$, 33, and 100 TeV.

MC Summary

Please look to see if what you needed is available

- Let us know either way in our form, we don't want groups getting stuck
- Technical questions on the EF08 slack channel are encouraged

Plots we want... hadronic SUSY

What needs to change

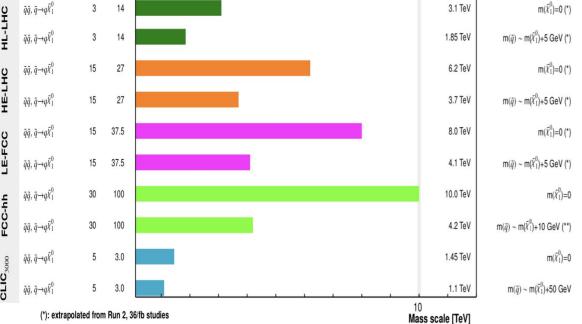
- any issues with these? things that should be added/changed?
- add new hh collider energies
- add muon collider
- (how) do we input pMSSM

All Colliders: squark projections

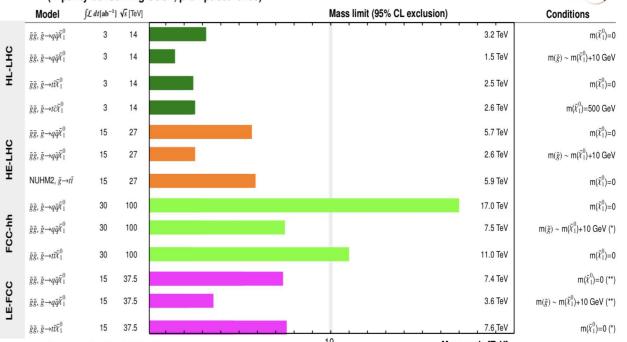
(R-parity conserving SUSY, prompt searches)

 $\int \mathcal{L} dt [ab^{-1}] \sqrt{s} [\text{TeV}]$

(**): monojet results not included

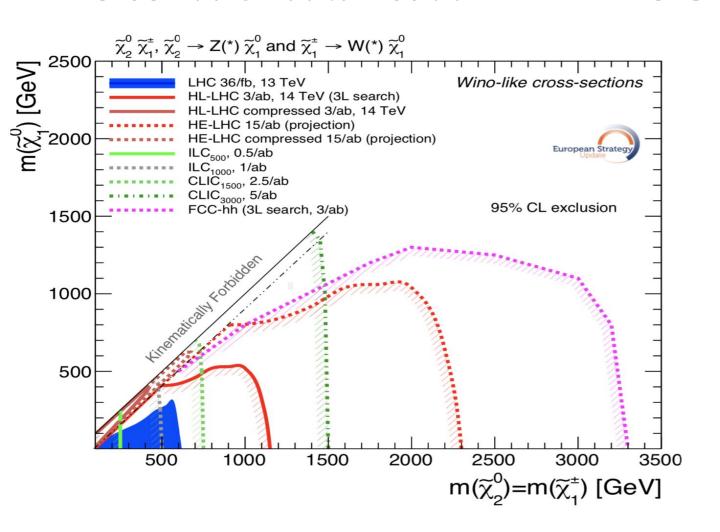

Model

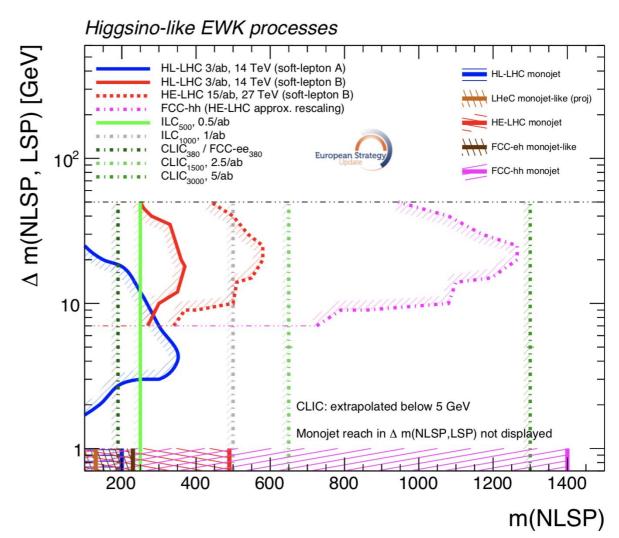
Conditions


Mass limit (95% CL exclusion)

Hadron Colliders: gluino projections

(R-parity conserving SUSY, prompt searches)


All Colliders: Top squark projections


(R-parity conserving SUSY, prompt searches)

	Model	r delah-	¹] √s [TeV]	Mass limit (95% CL exclusion)	Conditions
					1
ပ္	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\to}t\tilde{\chi}_1^0$	3	14	1.7 TeV	$m({ ilde{\chi}}_1^0$
HL-LHC	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0 / 3 \text{ body}$	3	14	0.85 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim r$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 { ightarrow} c \tilde{\chi}_1^0 / 4 \text{body}$	3	14	0.95 TeV	Δ m $(\tilde{i}_1, \tilde{\chi}^0_1)$ ~ 5 GeV, monoje
O	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}^0_1, \tilde{\chi}^0_2$	15	27	3.65 TeV	$m({ ilde \chi}_1^0$
HE-LHC	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 { ightarrow} t \tilde{\chi}_1^0 / 3$ -body	15	27	1.8 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim m(t)$
I	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / 4$ -body	15	27	2.0 TeV	Δ m($\tilde{t}_1, \tilde{\chi}^0_1$)~ 5 GeV, monoje
02702	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0$	15	37.5	4.6 TeV	$m(\tilde{\chi}_1^0)=0$
LE-FCC	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 { ightarrow} t \tilde{\chi}_1^0 / 3$ -body	15	37.5	4.1 TeV	$m(\tilde{\chi}^0_1)$ up to 3.5 TeV
Ė	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / 4$ -body	15	37.5	2.2 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}^0_1) \sim 5$ GeV, monojet
90	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$m(ilde{\mathcal{X}}_1^0)$
CLIC ₁₅₀₀	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim r$
O	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$	2.5	1.5	(0.75 - €) TeV	$\Delta m(\tilde{i}_1, \tilde{\chi}^0_1) \sim 50 \text{ G}$
000	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0$	5	3.0	1.5 TeV	m($\tilde{\chi}_1^0$)∼350 G
CLIC ₃₀₀₀	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	$\Delta m(\tilde{t}_1, \tilde{\chi}_1^0) \sim r$
0	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	(1.5 - €) TeV	Δ m $(\tilde{i}_1, \tilde{\chi}^0_1)$ ~ 50 G
듣	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} t\tilde{\chi}_1^0$	30	100	10.8 TeV	$m({ ilde \chi}_1^0$
FCC-hh	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0 / 3$ -body	30	100	10.0 TeV	$m(ilde{\mathcal{X}}_1^0)$ up to 4 1
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / 4\text{-body}$, 30	100	5.0 TeV	Δ m($\tilde{t}_1, \tilde{\chi}^0_1$)~ 5 GeV, monoje

Plots we want... EWK SUSY

What needs to change

- •any issues with these? things that should be added/changed?
- add new hh collider energies, add muon collider
- (how) do we input pMSSM (include two lines per experiment?)
- Add all hadronic EWK (shown to be powerful at very large Δm)
- Understand monojet cut of at larger Δm (underway at Penn)

Summary

Restart of Snowmass Energy Frontier Officially July 1st

• Contributed paper deadline 3/15/22

Plan your MC needs

This is key to making the deadlines and avoiding a scramble

Making sure your work gets in the EF08 report

• Fill in the form so we know how you are doing and what you plan to deliver: https://forms.gle/qdgl5k35rqu9gusw9

Help make sure the EF08 report has a broad view that is useful for scenario comparison

• Think about the plots and tables let us know what you think