

"Improved RRCAT cavities Processing & 2K test result"

Manish & Avinash

On Behalf of Collaborators

IIFC Meeting 110811

Improved Single cell cavities

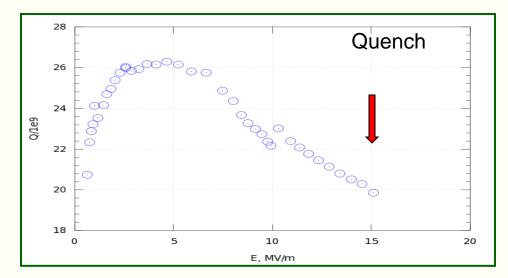
- RRCAT made two more single cell 1.3 GHz (2nd prototype) during 2011.
- TE1CAT003 arrived FNAL (May-11) & TE1CAT004 (August-11)
 - Detail technical report available in IIFC website.

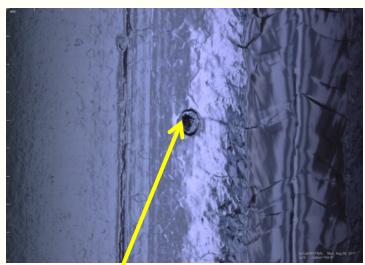
Document Number: RRCAT/PLSCD/CJQL/SCC/Disp/2011/02, April 2011

Manufacturing & QA Report of 1.3 GHz Single cell SCRF Cavity

Cavity ID: TE1CAT003

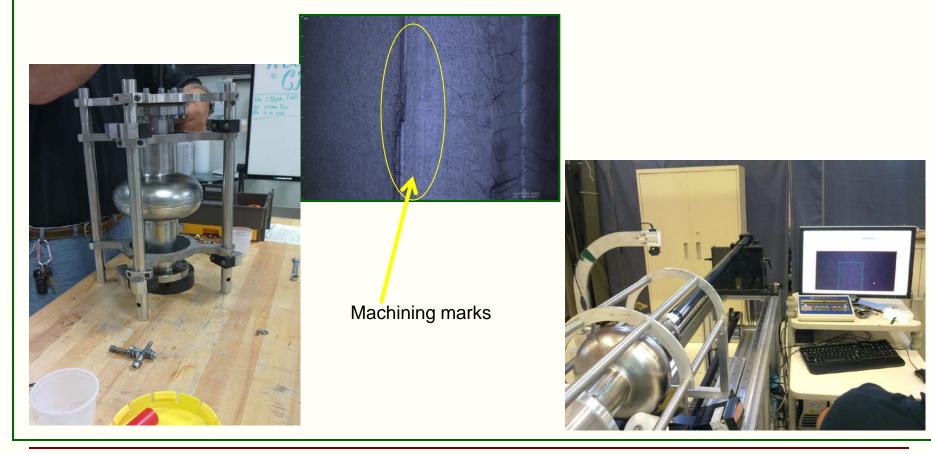
Prepared by:


TE1CAT004



TE1CAT003

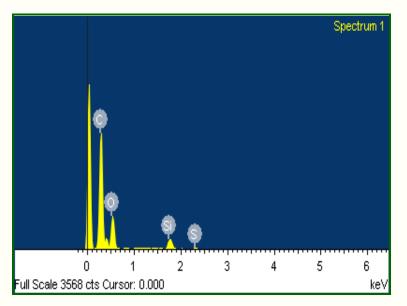
 Cavity initially tested after received the std ILC recipeconsisiting of bulk EP,800c furnace treatment, light EP,HPR,assembly & 120 bake.



Bump was cause of quench

Details Presented by Avinash on IIFC CCM meeting on August 23,2011

- **U**
- It was decided to remove machining marks & features after scraped bump by Centrifugal barrel polishing with optical inspection between rounds.

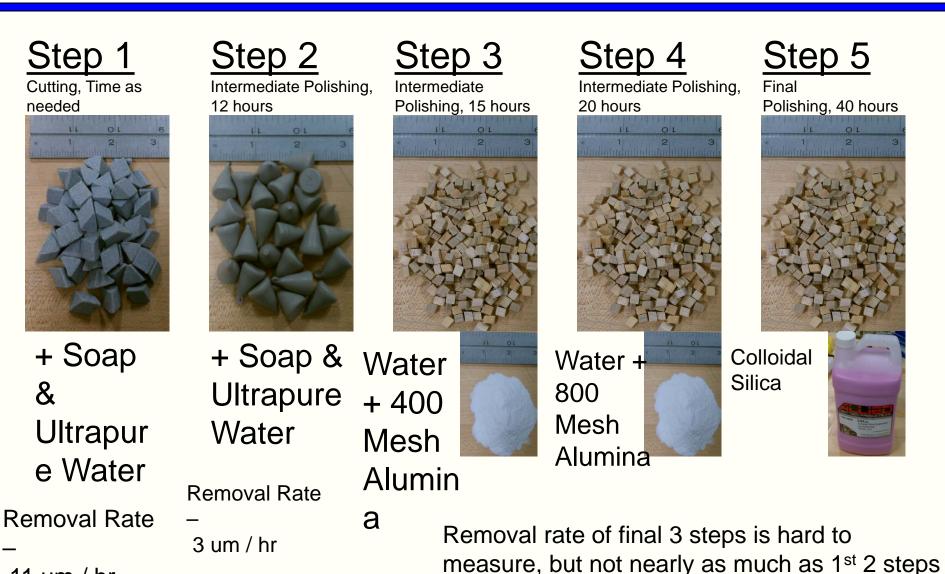


Scrapping the bump

EDX plot of debris removed

Element	Weight%	Atomic%	
СК	63.58	71.28	
ОК	31.20	26.26	
Si K	4.52	2.17	
S K	0.71	0.30	
			By: Donna & Charlie
Totals	100.00		

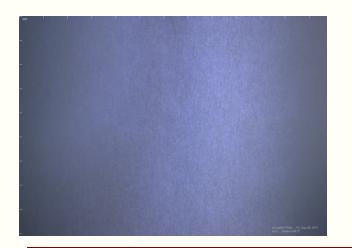
CBP is an alternative processing technique (Tumbling) that polishes the inside of superconducting RF cavities by rotating the cavities at high speed while filled with an abrasive media



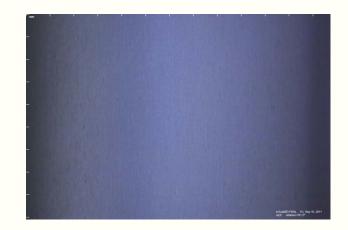
Source :C Cooper

Media used

11 um / hr


Optical inspection images Of TE1CAT003

eq1t_98.2 after cbp 2011/08/29

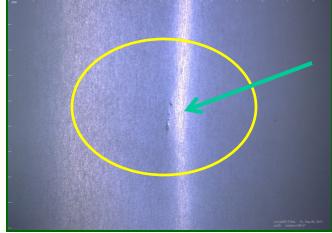

te1cat003_eq1t_98.2 2011-09-09

• te1cat003_eq1t_98.2 2011-09-01

te1cat003_eq1t_101.5 2011-09-16

Optical inspection images 0f TE1CAT003

te1cat003_eq1b_340.4 2011-08-29

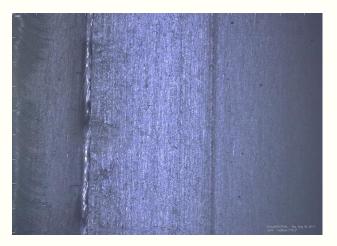


te1cat003_eq1t_339.9 2011-09-09

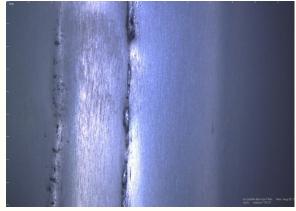
• te1cat003_eq1b_340.4 2011-09-01

• te1cat003_eq1b_339.9 2011-09-16

Suspect features. Rest all is clean



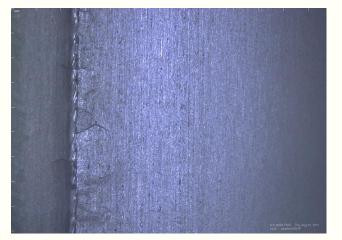
Optical inspection images Of TE1CAT004


te1cat004- before CBP_eq1b_170.2 2011-08-18

te1cat004_eq1b_170.1 2011-09-09

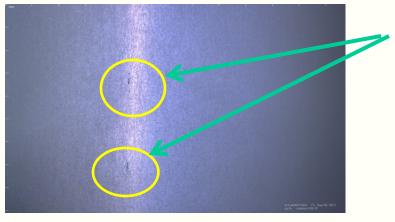
te1cat004-after CBP __eq1b_170.2
2011-08-29

te1cat004_eq1b_169.8 2011-09-16



Optical inspection images 0f TE1CAT004

 te1cat004-before CBP_eq1b_202.8_2011_08-18



te1cat004_eq1b_202.5 2011-09-09

te1cat004-after CBP _eq1b_202.9
2011-08-29

te1cat004_eq1b_202.5 2011-09-16

The only concern area, apparently looks very negligible, all other suspected area looks cleaned up

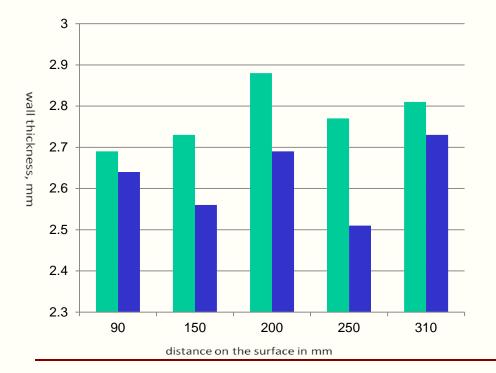
CBP data of TE1CAT003

date	CBP step	Wt before CBP	Wt after CBP	Tumbling time
2011-08-25	Step1	5288.5g	5245.8g	7 hrs
2011-08-25	step2	5245.8g	5221.2g	12 hrs
2011-08-27	step4	5221.2g	5218.3g	40hrs
2011-08-30	Step4	5218.3g		6 hrs
2011-08-30	step2			12 hrs
2011-08-31	Step4 (then OI)			40hrs
2011-09-02	step2			12 hrs
2011-09-07	step4	5129.8g		40hrs
2011-09-12	step2			12 hrs
2011-09-14	Step4(then OI)			40 hrs
2011-09-16	Step5 then HPR			87 hrs,30 min

CBP data of TE1CAT004

date	CBP step	Wt before CBP	Wt after CBP	Tumbling time
2011-08-25	Step1	5526.1g	5484.6g	7 hrs
2011-08-26	step2	5484.6g	5460.0g	12 hrs
2011-08-27	step4	5460.0g	5458.8g	40hrs
2011-08-30	Step1	5458.8g		6 hrs
2011-08-30	step2			12 hrs
2011-08-31	Step4 (then OI)			40hrs
2011-09-02	step2			12 hrs
2011-09-07	step4			40hrs
2011-09-12	step2			12 hrs
2011-09-14	Step4(then OI)			40 hrs
2011-09-16	Step5 then HPR			87 hrs,30 min

TE1CAT003


			positio Beam		distanc	e in mm 90	before processing 2.53		processing 2.5	Material rer 0.03	noved
			near Ir			150			2.38	0.18	
				quator		200			2.53	0.17	
			near Ir			250			2.42	0.21	
			Beam			310			2.47	0.12	
2.8							_				
								Average		0.142	
∀a_7			_				_				
ll thi											
7 6 Wall thickness , mm											
less ,							_				
mm											
.5	-	_					_				
.4		_	_	_	_		_				
.3							_				
2.2							_				
	90	150	200	250	310						
		Distance	on cavity	/ surface i	in mm						
											11

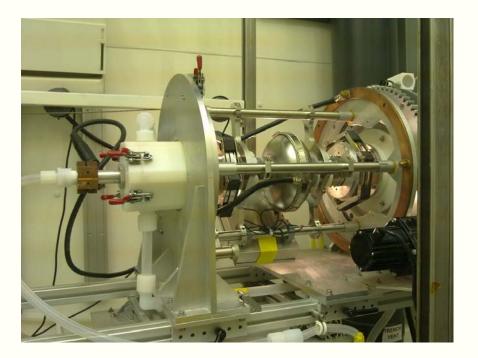
TE1CAT004

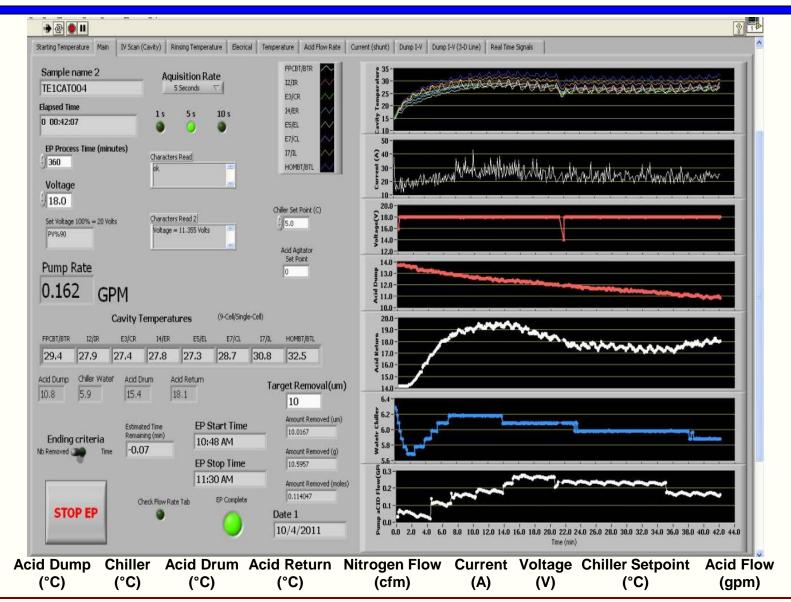
				Material
position	distance in mm	before processing	after processing	Removed
Beam pipe	90	2.69	2.64	0.05
near Iris	150	2.73	2.56	0.17
near Equator	200	2.88	2.69	0.19
near Iris	250	2.77	2.51	0.26
Beam pipe	310	2.81	2.73	0.08

Average

0.15

امنده الم




- Planned material removed during EP was 20 micron
- Average current 27 A, voltage 18V, cavity temperature 27 °C.

removed { @0.3 µm/min} for a duration of 1hr,6min

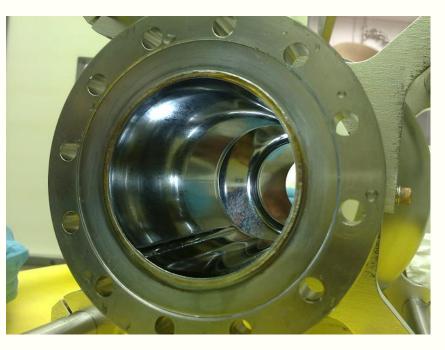
Typical EP process Monitoring

Time

\$600°C heat treatment for 3hrs

Vacuum furnace in IB4 (Max temp 1000°C)

Cavity moving inside the vacuum furnace



EP at ANL

Planned material removed during EP was 10 micron.

Inside surface after EP

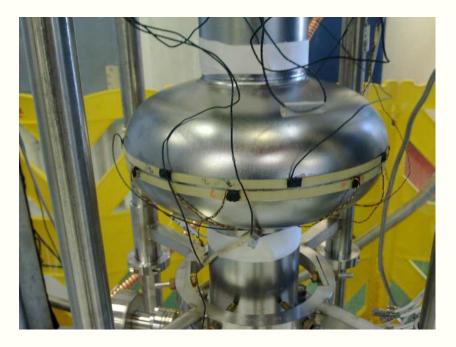
Draining of acid & rinsing after EP

After EP, ultrasonic cleaning for 60 min before HPR

Assembly under vacuum 7.2 E-7

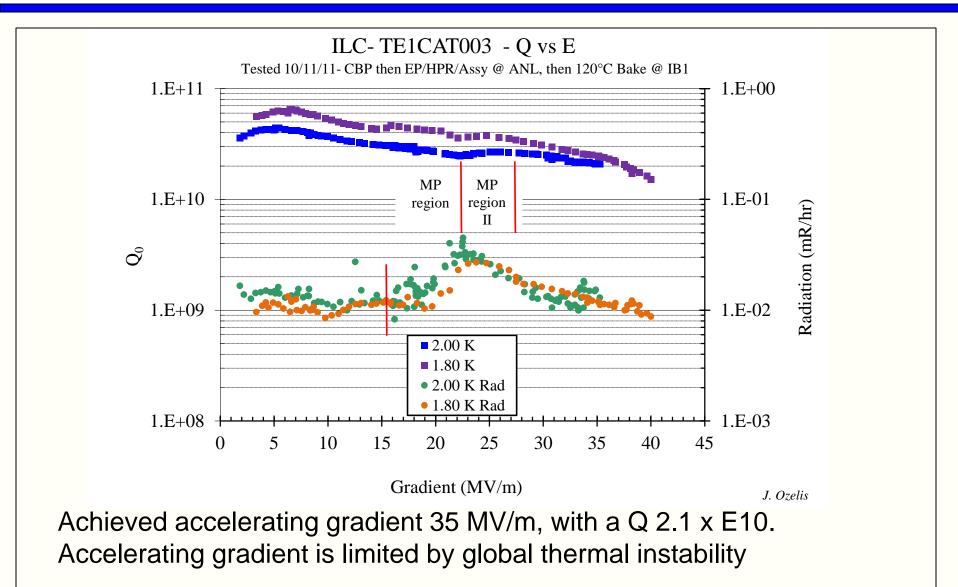
HPR station

Assembly of cavity with VTS insert

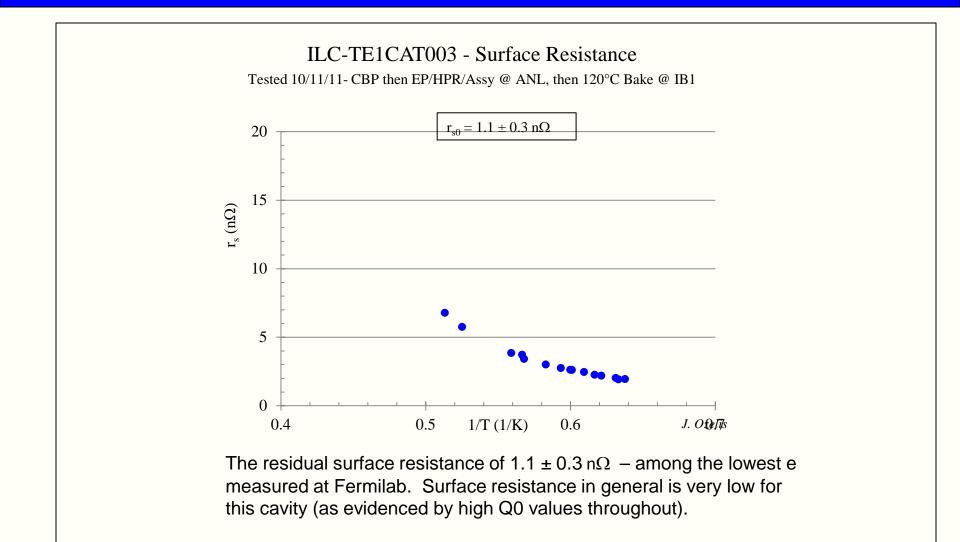


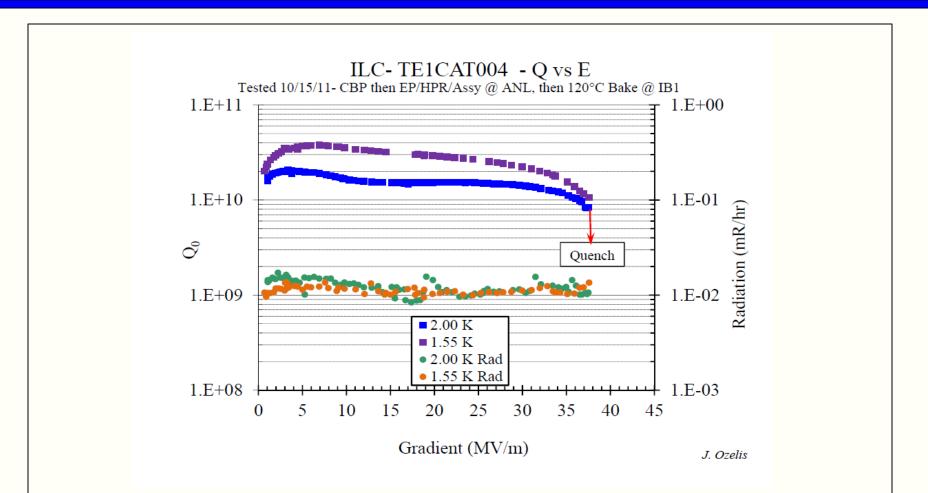
Heating Jackets around the cavity with temp monitor for 120 °C bake,

VTS test preparation

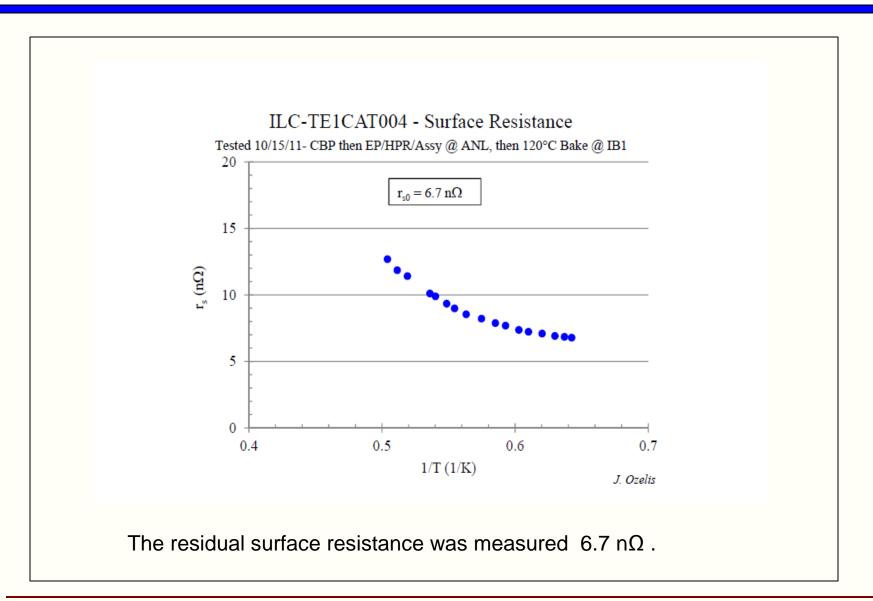

Fast thermometry around equator to detect Quench

Cavity insert mounted inside the VTS cryostat


2K VTS result of TE1CAT003



2K VTS result of TE1CAT004



Achieved accelerating gradient **37.5 MV/m**, with a Q **8.4 x E9** at **2K**.No Multipacting & field emission were observed at ant time during testing. Accelerating gradient is limited by quench.

Optical Inspection George Steuer Centrifugal Barrel Polishing Process Charlie Cooper, Dave Burk, George Steuer **Cavity EP Processing & clean room Assembly** Allan Rowe, Tom Reid & Ryan Murphy (ANL), Brent Stone **Cavity baking & transport** Allan Rowe, Damon Bice, Mayling Wong & all transport crew **Cold Test & preparation** Joe Ozelis, Dmitri A. Sergatskov, Morgan Carter Frequancy measurment: Timergali Khabiboulline I would also like to acknowledge Camille Ginsburg, Mark Champion & all team members.

Thanks

For excellent support & teamwork from all the colleagues at FNAL & ANL