Fermilab **ENERGY** Office of Science

pMSSM scan for future colliders (& more)

Jennet Dickinson Snowmass EF08 meeting July 22, 2021

Intro to pMSSM

- Most SUSY searches are optimized in terms of simplified models (2-3 free parameters)
- However, the full MSSM contains 120 free parameters
- The pMSSM goes beyond simplified models, but uses motivated assumptions to reduce the total number of parameters to a more tenable 19 parameters:

tan β : the ratio of the vev of the two–Higgs doublet fields. M_A : the mass of the pseudoscalar Higgs boson μ : the Higgs–higgsino mass parameter M_1, M_2, M_3 : the bino, wino and gluino mass parameters. $m_{\tilde{q}}, m_{\tilde{u}_R}, m_{\tilde{d}_R}, m_{\tilde{l}}, m_{\tilde{e}_R}$: first/second generation sfermion masses $m_{\tilde{Q}}, m_{\tilde{t}_R}, m_{\tilde{b}_R}, m_{\tilde{L}}, m_{\tilde{\tau}_R}$: third generation sfermion masses A_t, A_b, A_{τ} : third generation trilinear couplings.

arXiv 9901246

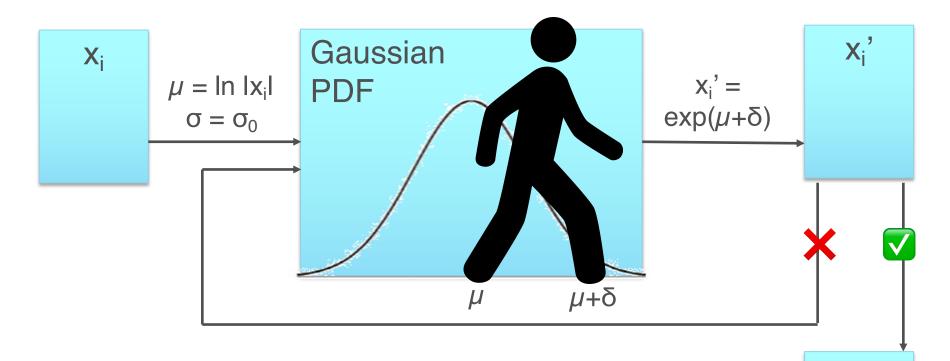
Goal of Snowmass pMSSM scan

- Explore future sensitivity in a framework that goes beyond simplified SUSY models
- Understand the physics potential of different future experiments in the context of the pMSSM
 - How will SUSY sensitivity from various collider scenarios overlap/complement each other?
 - What interesting pMSSM models have limited coverage, and how can we expand this coverage?
- Complementarity across Snowmass Frontiers: input from dark matter, rare frontier, etc.

- Sample points in the 19D pMSSM space
 - Build in well-established physics knowledge
- Focus in on interesting regions of phase space
 - Accessible to different experiments
 - Well-motivated by existing measurements
 - Well-motivated by theoretical considerations
- Generate signal events
 - Will be made available to all interested groups
 - SM backgrounds can mostly be generated centrally
- Get event counts for various signal regions
 - Based on selections chosen by different collider groups
- Compare performance across different future experiments

- Sample points in the 19D pMSSM space
 - Build in well-established physics knowledge
- Focus in on interesting regions of phase space
 - Accessible to different experiments
 - Well-motivated by existing measurements
 - Well-motivated by theoretical considerations
- Generate signal events
 - Will be made available to all interested groups
 - SM backgrounds can mostly be generated centrally
- Get event counts for various signal regions
 - Based on selections chosen by different collider groups
- Compare performance across different future experiments

Sampling 19D pMSSM space

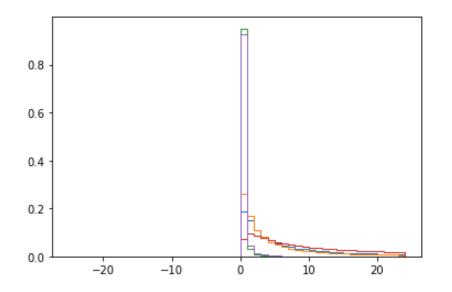

- We will perform a grand scan that aims to cover the OR of accessible ranges of many collider scenarios, up to 100 TeV pp collider
- This is a HUGE parameter space. Use a Markov chain Monte Carlo to step through the space in a smart way
 - Use logarithmic stepping to populate low values of mass parameters more densely than high values
 - Likelihood for accepting/rejecting a point is based on existing experimental results

Parameter ranges

Parameter	Minimum	Maximum	Stepping	
tan β	1	60	Log	
M _A	100 GeV	25 TeV	Log	
Iμl	80 GeV	25 TeV	Log	
IM ₁ I	1 GeV	25 TeV	Log	
IM ₂ I	70 GeV	25 TeV	Log	
M ₃	200 GeV	50 TeV	Log	
m _L 123~, m _e 123~	90 GeV	25 TeV	Log	
m _Q 12~, m _u 12~, m _d 12~	200 GeV	50 TeV	Log	
m _Q 3~, m _u 3~, m _d 3~	100 GeV	50 TeV	Log	
IA _b I, IA _τ I	1 GeV	7 TeV	Log	
IAtl	1 GeV	3√(m _Q 3~m _u 3~)	Log	

McMC: logarithmic stepping

 X_{i+1}


辈 Fermilab

Accept if x_i ' is in the allowed range and $L(x_i)$ satisfies criteria

Logarithmic stepping: a simple McMC test

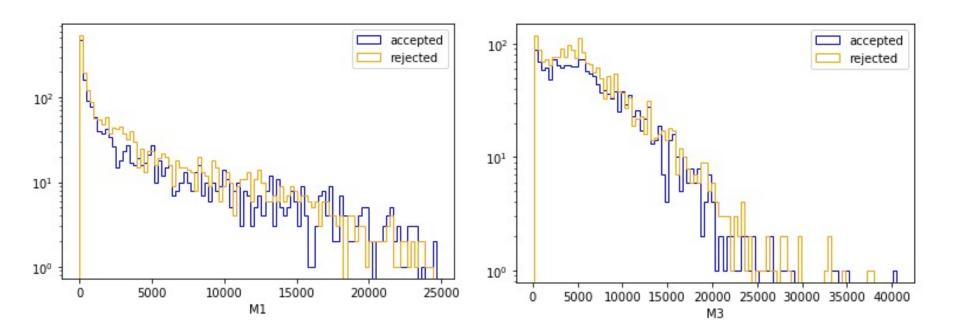
- Use a 1D parameter space with 0 < x < 25
- Use a flat likelihood for simplicity
- Run McMC with 1,000,000 iterations
- Do this 5 times with random starting points

- **5.1**, **3.2**, **14.1**, **15.7**, **0.1**

Log stepping, fixed width gaussian

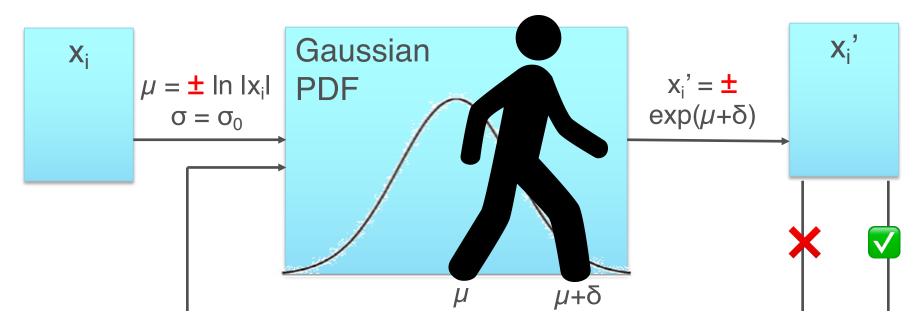
Gives the qualitative behavior we want

McMC: logarithmic stepping



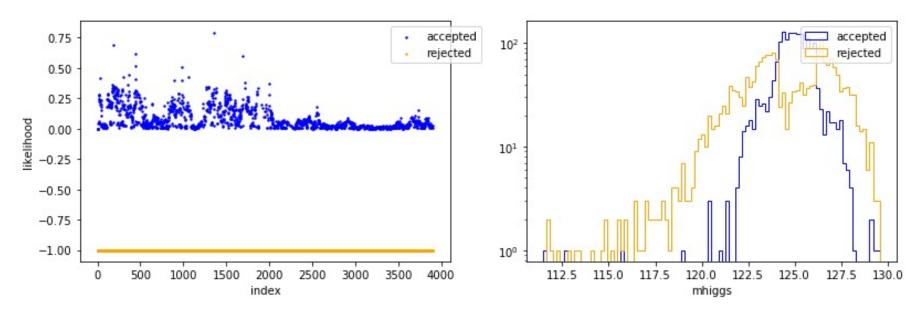
- Log stepping achieves the desired effect: lower masses are explored with finer granularity than higher masses
- Width σ_0 determines the fraction of high mass points - Currently $\sigma_0 = 1-10\%$ of the allowed parameter range
- Optimization study of σ_0 ongoing
 - e.g. are there enough points where strong SUSY is decoupled

🛠 Fermilab


McMC: impact of Gaussian's width

- In a 4000 point scan with $\sigma_0 = 5\%$ of the parameter range:
 - Mass parameters are explored up to 25 TeV (see M1), but not well up to 50 TeV (see M3)
 - Tanß, Al, Ab, At are explored out to their limits

McMC: logarithmic stepping



- Drawback: log stepping cannot cross zero
 - Some pMSSM parameters can have \pm values
- Solution: keep sign convention of initial point
 - When multiple scans are launched in parallel, different initial conditions will be chosen at random, including signs

🛠 Fermilab

McMC likelihood

- Construct a likelihood for the pMSSM point based on its agreement with existing measurements
 - The McMC prefers to take steps to new points with higher likelihood (better agreement with measurements)

🛠 Fermilab

Example 4000 point scan:

McMC likelihood

- Contributions from SPheno and m_W (FeynHiggs): Gaussian with mean/width = experimental value/uncertainty
- Contributions from Superiso, HiggsSignals, and HiggsBounds: χ² is calculated directly by the program

Superiso 4.0	SPheno 4.0.4	FeynHiggs 2.18.0	Higgs Signals 2.6.0	Higgs Bounds 5.9.1
Δ ₀ (B→Kɣ)	BR(B⁺ →τv)	m _w	LHC Higgs meas.	LHC Heavy H(TT)
BR(b→s¥)	$BR(D_s \rightarrow \tau v)$			-
$BR(B_s \rightarrow \mu \mu)$	$BR(D_s \rightarrow \mu v)$	m _H , H		
$BR(B_d \rightarrow \mu \mu)$	Δ(ρ)	properties		
BR(b→sµµ)	α _S			
BR(b→see)	m _{top}			
BR(B0→K*⁰¥)	m _{bottom}			

- Sample points in the 19D pMSSM space
 Build in well-established physics knowledge
- Focus in on interesting regions of phase space
 - Accessible to different experiments
 - Well-motivated by existing measurements
 - Well-motivated by theoretical considerations
- Generate signal events
 - Will be made available to all interested groups
 - SM backgrounds can mostly be generated centrally
- Get event counts for various signal regions
 - Based on selections chosen by different collider groups
- Compare performance across different future experiments

Narrowing the focus

- We can't simulate events for every pMSSM point. Will need to decide what regions to focus on
- Could decide to not simulate inaccessible points
 - With small cross sections / low yield at fixed luminosity
 - Based on truth-based likelihood, as ATLAS does
- Could focus the scan by over-sampling, i.e. simulating a high density of points in interesting regions:
 - Near the measured value of g-2
 - With DM relic density consistent with observations
 - Satisfying naturalness criteria

- Sample points in the 19D pMSSM space
 Build in well-established physics knowledge
- Focus in on interesting regions of phase space
 - Accessible to different experiments
 - Well-motivated by existing measurements
 - Well-motivated by theoretical considerations
- Generate signal events
 - Will be made available to all interested groups
 - SM backgrounds can mostly be generated centrally
- Get event counts for various signal regions
 - Based on selections chosen by different collider groups
- Compare performance across different future experiments

Sample generation

- Signal samples can be generated by feeding SLHA files into Pythia, then Pythia events through Delphes
 - Workflow is being developed
- SM backgrounds to be provided for the colliders and center of mass energies listed below (<u>link to slides</u>)

Machine	Energy							
CEPC	mz	2mw	240					
FCC-ee	mz	2mw	240	2mt				GeV
ILC	250	350		500	1000			
CLIC			380			1500	3000	
HL-LHC/FCC-hh	14	75	100	150				
LHeC/FCC-eh	1.3	3.5						TeV
μμ	3	10	14	30				

John Stupak - University of Oklahoma

🛠 Fermilab

Conclusions

- The technical implementation of a pMSSM grand scan using Markov chain Monte Carlo is in place
 - Likelihood based on existing measurements steers the scan away from excluded regions
 - Logarithmic stepping ensures the whole phase space is explored, while populating low parameter values with high density
- What subset of signal points to generate? Brainstorm is ongoing, already have a few possibilities
- Workflow for signal MC generation is under development

- Sample points in the 19D pMSSM space
 - Build in well-established physics knowledge
- Focus in on interesting regions of phase space
 - Accessible to different experiments
 - Well-motivated by existing measurements
 - Well-motivated by theoretical considerations
- Generate signal events
 - Will be made available to all interested groups
 - SM backgrounds can mostly be generated centrally
- Get event counts for various signal regions
 - Based on selections chosen by different collider groups
- Compare performance across different future experiments

Welcoming input

- We hope this pMSSM scan can be very widely useful for Snowmass studies
 - pMSSM points and generated signal events will be made available to everyone
- More groups using the scan points for studies = more complete comparison as the final product
 - Let us know if you want a particular collider setup for generated events, etc.
 - Want to extend beyond just EF (dark matter, rare, etc.)
- Feel free to exercise the scan code. Details and instructions can be found on <u>this twiki</u>

