
WIB OPC UA Server

Ben Land
July 20, 2021





Overview

● OPC UA is a protocol for clients (control software) and servers (hardware) 
to interface for commands and status updates

● Giovanna recommended QUASAR for generating OPC UA servers
○ Wraps open62541 (most popular free / open source OPC UA implementation)

○ Used (exclusively) by CERN / one primary developer

● Quasar has some quirks, but easier than using open62541 directly
○ Only serious project documentation is a series of youtube videos on basic topics

○ Complex build system (Python+CMake) that isn’t well documented

○ Significant code generation → relatively simple interface to implement

● Generates skeleton of a OPC UA server from XML schema
○ Define “classes” encapsulating different subsystems

○ Define “variables” and “methods” for each class

○ Implement logic in generated C++ code

https://github.com/quasar-team/quasar
https://open62541.org/


Server Layout

● WIB class interfaces with wib_server via ZMQ
○ zmq_endpoint specified in the configuration

● Server supports any number of WIBs
○ ROOT represents a server process
○ If running on the WIB, probably just one WIB object

○ If running off the WIB, one process could be several

● Has methods for querying WIB metadata
○ Software and firmware versions

● Contains three child classes
○ FEMBPower, Sensors, and TimingEndpoint





Server Layout

● FEMBPower class controls FEMB power regulators
● Contains variables for each regulator setpoint

○ Read/Write by OPC UA clients

● Contains a “set” method to change power state of FEMBs
○ Loads setpoints, changes FEMB power state (4 boolean parameters)

○ Also sets the “warm” or “cold” parameter sets (last boolean parameter)

○ Runs wib_server’s init sequences for different power-on stages (uint32)

● TODO: current power state? 





Server Layout

● Sensors class provides access to onboard monitoring
● Contains variables for each sensor value

○ Typically in raw volts

■ i.e. before/after sense resistors

○ Quasar supports “calculated variables” 

■ To add scale factors, compute current

■ Only useful if SC needs this

■ Clients can calculate their own scaled values

● Values updated by polling the i2c sensors via wib_server

○ By calling “poll” method as needed

○ By setting an auto poll period (handled by server)

...



PetaLinux Integration

● QUASAR documentation suggested this worked out-of-the-box
○ Realistically, hadn’t been tested in years, and dev doesn’t use it

○ Quasar builds and runs nicely within its development environment, not much 

baked in support for actually installing it

● Spent a couple of days trial/error debugging build system
○ Stripped out several unnecessary parts of Python build code

○ Added several non-existent required dependencies in Petalinux (Yocto)

○ Kludged together an installer script

● Now working on my ARM64 emulator with WIB linux distro
○ Will deploy to UPenn WIB later this week (or soon…)

○ For now, testing with simulated wib_server on x86_64 host



Live Demo!


