Design, Deliverables, Budget, Plan

DUNE Far Detector #2 Photon Detector System Workshop

July 26, 2021 Ryan Rivera - FD2 PDS Level 2 Manager

Design & Deliverables

- Two primary components:
 - a. Detector
 - b. Readout
- FD2 PDS design lends itself well to collaboration rather than competition among collaborators.
- WBS plan includes prototype path, 1/20th scale module-0, and production
- The baseline <u>production plan</u> is 320 cathode modules + 320 membrane modules with analog readout in the cold.
- The **prototype path** considers multiple readout flavors.
- Through **module-0 path** considers multiple detector types.

Detector Module Types (1 of 3)

Cathode-mount: 60cm x 60cm WLS plate w/160 SiPMs, 2-channels (80 SiPMs/ch)

4 differential channels (matched length)

Rigid interface board:

Active ganging, PoF, readout fibers.

65cm

4 differential channels (matched length)

Detector Module Types (2 of 3)

Membrane-mount: 60cm x 60cm WLS plate w/160 SiPMs, 2-channels (80 SiPMs/ch)

Detector Module Types (3 of 3)

Field Cage-mount: 60cm x 60cm WLS plate w/80 SiPMs, 2-channels (40 SiPMs/ch)

Readout Flavors

- Primary factors:
 - a. Signal quality
 - b. Long-term cold qualification trade-offs
 - c. Topology cost
- Where is the cold/warm boundary?
- Where is the analog/digital boundary?
- Otherwise same components:
 - a. Passive/active SiPM ganging
 - b. Buffer stage
 - c. Digitizer
 - d. Aggregation & DAQ interface layer

Readout Flavor (1 of 3)

Analog readout in cold

cryostat

Readout Flavor (2 of 3)

Digital readout in cold

Buffer stage

cryostat

Digitizer

Ganging

Detector

Aggregation &

DAQ

Readout Flavor (3 of 3)

Digital readout in warm

cryostat

WBS

- We have full P6 schedule through commissioning in 2028
- 1:1 labor hour ratio for University:Lab

Schedule

- October 2021 and January 2022 Cold Box 1 & 2 demonstrations
- Spring 2022 Preliminary Design Review
- Summer and Fall 2022 Long-term qualification studies and Cold Box 3 & 4 demonstrations
- Early 2023 Final Design Review
- Summer 2023 module-0 demonstration at ProtoDUNE2
- End-of-2023 Production Readiness Review
- 2024 Launch production orders
- 2024-2026 Construction **←**
- Fall 2026 Ready for installation
- 2027 Commissioning

Great opportunities for new collaborators to join!

Demonstration Progression

- Cold Box 1
 - Goals: Cathode mounted detector module, power-over-fiber, analog readout
 - Stretch: Cryosub readout
- Cold Box 2
 - Improved Cathode mounted detector module, power-over-fiber, analog and digital/Cryosub readout
 - Membrane mounted detector module, power, readout.
 - DAQ integration
- Cold Box 3
 - Improved Cathode mounted detector module, power-over-fiber, analog and digital/Cryosub readout
 - Improved Membrane mounted detector module, power, readout.
 - "Field-cage" type module mounted on Cathode, with isolated readout
 - Improved DAQ integration
- Cold Box 4
 - Improved Cathode mounted detector module, power-over-fiber, analog and digital/Cryosub readout
 - Improved Membrane mounted detector module, power, readout.
 - Improved "Field-cage" type module mounted on Cathode, with isolated readout
 - Improved DAQ integration
- ProtoDUNE2 module-0
 - 3 module types (Cathode, Field-cage, and Membrane), power-over-fibers, readout, DAQ integration
 - Study Field-Cage occlusion for Membrane module type

Risks

<u>Type</u>	<u>Title</u>	Cathode Point Estimate	40%-Membrane Point Estimate	<u>Probability</u>	Expected Value
Threat	Insufficient Power-over-Fiber efficiency	\$ 400,000	\$ -	35%	\$ 140,000
Threat	Insufficient Data Compression achieved before cold waveform SERDES	\$ -	\$ -	35%	\$ -
Threat	Physics simulation shows additional detector coverage required	\$ 1,000,000	\$ 1,000,000	35%	\$ 700,000
Threat	Detector less efficient than estimated	\$ 500,000	\$ 50,000	35%	\$ 192,500
Opportunity	Commodity prices decrease	\$ 80,000	\$ 80,000	20%	\$ (32,000)
Threat	Commodity prices escalate faster than inflation	\$ 80,000	\$ 80,000	20%	\$ 32,000
Opportunity	Insulation solution allows for warm electronics in cryostat	\$ 500,000	\$ -	20%	\$ (100,000)
Threat	Components fail 30-year cold validation testing	\$ 1,000,000	\$ 500,000	35%	\$ 525,000
Threat	Underestimate in level of effort required for 30-year cold validation	\$ 1,000,000	\$ 500,000	35%	\$ 525,000
Threat	Production mechanical packaging costs exceed estimated cost	\$ 80,000	\$ -	50%	\$ 40,000
Threat	Production assembly support M&S costs exceed estimated cost	\$ 80,000	\$ -	35%	\$ 28,000
Threat	Production installation costs require additional costed technician labor	\$ 500,000	\$ 250,000	35%	\$ 262,500
Threat	Cathode plane HV potential variation requires modifications to power distribution	\$ 2,000,000	\$ -	35%	\$ 700,000
Threat	Photon detector electronics generates noise on the TPC wire readout	\$ 100,000	\$ 200,000	20%	\$ 60,000
Opportunity	Additional collaborating funding agencies identified	\$ 2,000,000	\$ 2,000,000	35%	\$ (1,400,000)
			Cathode Risk Total:		\$ 1,673,000

Baseline Estimates

- Cathode(analog) + 40%-Membrane
 - \$3.5M detector + \$2M electronics +
 - \$5M labor + \$1.5M non-labor = \$12.0M
- Membrane only
 - \$3.7M detector + \$2M electronics + \$5M labor + \$1.5M non-labor = \$12.2M
- Cathode(analog) + 25%-Field Cage(analog)
 - \$2.8M detector + \$2M electronics + \$5M labor + \$1.5M non-labor = \$11.5M
- Cathode(1/36 digital) + 25%-Field Cage(1/36 digital)
 - \$2.8M detector + \$1M electronics + \$5M labor + \$1.5M non-labor = \$10.5M

Cathode(analog) + 40%-Membrane(analog)

Detector:

- 288 Membrane, 160 SiPMs, 60cm x 60cm, \$5.1K * 288
- 6.6% detector coverage, 0.044 SiPMs/cm2
- 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320
 = \$2.0M
- 14.8% coverage, 0.044 SiPMs/cm2

Cold Electronics + Power-over-Fiber:

- 1 CE box per 4 PD modules = \$0.5M membrane + \$0.9M cathode = \$1.5M
- 0.1 kW membrane + 0.2 kW cathode = 0.3 kW

Warm Electronics:

- \$180K membrane + \$60K cathode
 = \$0.25M
- Total:
 - \$3.5M detector + \$2M electronics + \$5M labor + \$1.5M non-labor = \$12.0M

Membrane(analog) Only

- Detector:
 - Qty. 720, 160 SiPMs, 60cm x 60cm, \$5.1K * 720
 - 16.6% detector coverage, 0.044 SiPMs/cm2
- Cold Electronics:
 - 1 CE box per 4 PD modules
 - o 0.2 kW
- Warm Electronics:
 - \$135K digitizer + \$285 power supplies

= \$420K

= \$3.7M

= \$1.4M

- Total:
 - \$3.7M detector + \$2M electronics + \$5M labor + \$1.5M non-labor = \$12.2M

Cathode(analog) + 25%-Field Cage(analog)

Detector:

- 192 Field Cage, 90 SiPMs, 60cm x 60cm, \$4K * 192
 = \$0.78M
- o 3.7% detector coverage, 0.025 SiPMs/cm2
- 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320= \$2.0M
- 14.8% coverage, 0.044 SiPMs/cm2
- Cold Electronics + Power-over-Fiber:
 - 1 CE box per 4 PD modules = \$0.5M field-cage + \$0.9M cathode = \$1.5M
 - o 0.1 kW field-cage + 0.2 kW cathode = 0.3 kW
- Warm Electronics:
 - \$120K field-cage + \$60K cathode= \$0.18M
- Total:
 - \$2.8M detector + \$2M electronics + \$5M labor + \$1.5M non-labor = \$11.5M

Cathode(digital) + 25%-Field Cage(digital)

Detector:

- 192 Field Cage, 90 SiPMs, 60cm x 60cm, \$4K * 192
 = \$0.78M
- o 3.7% detector coverage, 0.025 SiPMs/cm2
- 320 Cathode, 160 SiPMs, 60cm x 60cm, \$6.2K * 320
 = \$2.0M
- 14.8% coverage, 0.044 SiPMs/cm2
- Cold Electronics + Power-over-Fiber:
 - 1 CE box per 36 PD modules = \$0.25M field-cage + \$0.4M cathode = \$0.65M
 - o 0.05 kW field-cage + 0.15 kW cathode = 0.2 kW
- Warm Electronics:
 - \$120K field-cage + \$60K cathode= \$0.18M
- Total:
 - \$2.8M detector + \$1M electronics + \$5M labor + \$1.5M non-labor = \$10.5M

Timeline Summary

- There will be key decision points for baseline changes to mitigate risk, meet physics requirements, or reduce topology cost before launching production.
 - October 2021 and January 2022 Cold Box 1 & 2 demonstrations
 - Spring 2022 Preliminary Design Review
 - Summer and Fall 2022 Long-term qualification studies
 - Early 2023 Final Design Review
 - Summer 2023 module-0 demonstration
 - End-of-2023 Production Readiness Review
 - 2024 Launch production orders