Dichroic Filters

Ana Machado DUNE FD2 Photon Detection Workshop July 26th 2021

Content

- Optical filters
- Filter Substrate
- R&D for FD1
 - Comparison between different companies
 - Measurements at three different incidence angles
- OPTO company
- OPTO filters characteristics
- Prototype production
- Alternative Manufacturer
 - OPTO dichroic filter vs. ZAOT substrate
 - ZAOT dichroic filter simulation
- Next Steps

Optical Filters

The optical filters need to have these characteristics:

- Transparent for wavelenghts bellow the filter cutoff
- · Reflective for wavelenghts above the filter cutoff
- Designed for incidence angle of 45 degrees

Filter Substrate

Above 350nm the transmitance spectrum of the two samples is similar. The choice of B270 is convenient because it is cheaper

R&D for FD1

- ASAHI and OMEGA \rightarrow Substrate Fused Silica
- OPTO → Substrate Optical Glass B270

OPTO filters was one of the best in terms of pTP adhesion

R&D for FD1

Measurement at different angles (30, 45 and 60 degrees)

OP200 Filter

OPTO Electronics - BR

https://www.opto.com.br/

- Spinoff of USP São Carlos, 35 years experience
- Antireflective lenses, medical equipments for eye surgery, odontologic reflectors, filters, mirrors, prismas, lasers.
- Space and defense: multispectral chambers for satellites, filters for space applications, thermal vision.

OPTO Filters FD2

Coating specification:	Cut-off: 400 nm – transmission between 300nm and 400nm, and reflection between 400nm and 500nm. • Incidence angle – 45 degrees
Substrate:	$ \begin{array}{l} \mbox{Optical glass B270:} \\ - \mbox{Transmission $\tau\nu$D65 (d = 2.0 mm) = 91.7\%$} \\ - \mbox{Expansion coefficient (20 °C; 300 °C) (static measurement) = 9.4 \cdot 10^{-6} K^{-1}$} \\ - \mbox{Melting Temperature= T_g 542 °C$} \\ - \mbox{Dielectric Constant ϵ_r at 1 MHz = 7.5$} \\ - \mbox{Refraction Index n_D = 1.5229$} \\ - \mbox{Density ρ = 2.56 g/cm^3$} \end{array} $
Dimension:	Width: 97.0 (+0.0 - 0.3)mm Length: 97.0 (+0.0 - 0.3)mm Thickness: 1.0 (+- 0.1)mm
Improvement proposed by OPTO:	

Improvement proposed by OPTO:

- Possible to add a reflective band in correspondence of the wavelenght of the lasers to • block the light leaking from the lasers
- Production of larger area filters

Prototype production

- 75 substrate sent to CSU for mechanical tests
- 250 has been ordered to OPTO
 - 2 weeks for production
- NEW disc for pTP evaporation is under production with capacity of 25 filters
- Wavelenght shifter deposition → p-Therphenyl
- Tickness of deposition → around 400µg/cm²
- Cleaning protocol well established and tested

Criticity for FD2 production

- 1) Person power for cleaning and pTP deposition
- 2) Shipping (special boxes need to be developed)
- 3) Storage to avoid humidity

Alternative Manufacturer

Motivations

- Found a second manufacturer to support OPTO in the massive production for VD and in case (if needed) for the HD
- For the VD-Megacell: produce dichroics in 200 x 200 mm side → the filter matrix will be of 9 elements instead of 36 elements
- For the 20 x 20 mm size it is mandatory to adopt the 2 mm thickness
- Found a company in the Milano metropolitan area: industrial partner of INAF (Istituto Nazionale di Astro Fisica) for optical mirrors and devices.
- ZAOT: <u>https://www.zaot.com/en/</u> specialized in optical thin film coatings
 - Antireflective coatings
 - Beam splitters
 - Front surface mirrors
 - Heat protection mirrors
 - Cold light mirrors
 - Dichroic filters
 - Conversion Filters
 - UV coatings

Credits: Carla Cattadori

Dichroic (OPTO) X Substrate (ZAOT)

Comparative Transmittance measurements of OPTO Dichroic (pTP removed) and ZAOT optical glass (substrate only)

Credits: Carla Cattadori

Simulation

ZAOT simulated Dichroic thin film reflection curve for Fused Silica w. AR coating at 45 deg and 30 deg

Credits: Carla Cattadori

Next Steps

- Production of dichroic filters by OPTO for the prototype (August)
- pTP coating at UNICAMP (August/September)
- Production of substrate (Borofloat-33) by ZAOT company. (August/September)
- Comparative measurements between OPTO and ZAOT substrate
 @ UNICAMP → (ask to OPTO provide also the same substrate???)
- Production of dichroic filter samples by ZAOT
- Test pTP adhesion on ZAOT filters
- Comparative measurements between OPTO and ZAOT filters @ UNICAMP (ZAOT suggests that an Anti-Reflection layer will improve ~ 4% the transmission at the first interface)

