DUNE VD/PD Cryogenic Digital Optical Links DUNE Photodetector Consortium Workshop July 27, 2021 David Christian Greg Deuerling Jonathan Eisch Jason Greskoviak Andres Quintero Parra Alan G. Prosser #### Outline Brief review of the strategy Testing results of TOSAs (laser diodes, monitor photodiodes) Testing of laser driver ICs Electrical testing Combined electrical/optical testing Plans for improving results LED/Photodiode-based solutions Sidebar: Optical spectrum of laser diodes at 295 K and 77 K Discussion ### Some Background Digital Optical Links vs Analog Optical Links Digital Optical Links are characterized by... Noise margin advantages (+) Flexibility in coding (error detection/correction) (+) Signal to quantization noise is unavoidable (-) Much industry experience and many components (at room temperature) (+) Time Division Multiplexing may be employed (+) Analog Optical Links are characterized by ... Lower cost and complexity in typical installations (+) Higher signal to noise requirements typically imply higher power (-) Transfer function must be well characterized to insure extraction of original signal (calibration) (-) ### Strategy: Digital Optical Links Test Program 295 K and 77 K Control of Modulation Current (TOSAs) **COTS Laser Diode** Alternative Approach: LED/Photologic Pair Over Plastic Optical Fiber (~150 Mbps) Plan: Bring Together for Custom Gbps Transmitter ### Cumulative TOSA Laser Diode Testing Summary FP-1310-4I-LCC (4 Gbps rated) Results obtained with 50 μ m core Multimode Fiber and Matrix LC Latch LD1 results obtained with laser mounted on ADN2526 Test Board (controlled by laser driver BSET circuit) LD2 results obtained with laser directly connected to trim pot circuit ### TOSA Monitor Photodiode Testing Summary FP-1310-4I-LCC (4 Gbps rated) **FUNCTIONAL BLOCK DIAGRAM** CPA VCC ADN2526 ∩IMODP ≸50Ω IMOD 50Ω ≸ OIMODN VCC CROSS POINT ADJUST DATAP DATAN **⇔IBMON** DIBIAS \$800Ω ≹200Ω €200Ω BSET MSET VEE ADN2526 Laser Driver Results obtained with 50 μm core Multimode Fiber and Matrix LC Latch #### Testing with ADN2526 Laser Driver Custom LN2 Board – Version 1 Room temperature testing first, followed by testing in LN2 **Electrical Testing** Optical Testing (with Finisar FP-1310-4I-LCC and MMF) **ADN2526** | BIAS CONTROL INPUT (BSET) | | | | | |---------------------------------|----|------|-----|------| | BSET Voltage to IBIAS Gain | | 90 | | mA/V | | BSET Input Resistance | | 1000 | | Ω | | MODULATION CONTROL INPUT (MSET) | | | | | | MSET Voltage to IMOD Gain | 50 | 78 | 100 | mA/V | | MSET Input Resistance | | 1000 | | Ω | FP-1310-4I-LCC Operating Current $T_{c} = 25^{\circ}C$ 32 mΑ I_{OP} To establish **Outputs** Inputs (electrical) CONFIG Laser Diode Driver For BSET = 0.22V (Ibias = 20 mA) For MSET = 0.13 (Imod = 10 mA)* ^{*}Based on FP-1310-4I-FCC Measured Slope Efficiency with MMF. 7 Calculations in Extra Slides ### ADN2526 Laser Driver Electrical Testing Bias Setting Performance (BSET) Results agree nicely from one device to the next Results for one device tested show little variation when immersed in LN2 ## ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature Peak to Peak Amplitude = 210 mV 10 Gbps PRBS7 Electrical Input Pattern MSET = 75 mV; Ibias = 19 mA Peak to Peak Amplitude = 215 mV ## ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature Peak to Peak Amplitude = 321 mV 10 Gbps PRBS7 Electrical Input Pattern MSET = 125 mV; Ibias = 19 mA Peak to Peak Amplitude = 321 mV ## ADN2526/FP-1310-4I-LCC Combined Testing Making the Optical Connection ## ADN2526/FP-1310-4I-LCC Combined Testing – Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps) MSET = 30 mV Peak to Peak Amplitude = 438 μ W MSET = 40 mV Peak to Peak Amplitude = 530 μ W ## ADN2526/FP-1310-4I-LCC Combined Testing – Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps) MSET = 90 mV Peak to Peak Amplitude = 1012 μ W MSET = 100 mV Peak to Peak Amplitude = 1124 μ W ### ADN2526 Board 1 Dynamic Performance Summary vs Modulation Setting Lack of corresponding optical data was due to issues securing the laser diode to the board #### ADN2526 Board 2 OMA Pattern (clock-like) at 10 Gbps LC TOSA with pins LC TOSA with flexible circuit (impedance controlled) Clearly some signal integrity improvements will be desirable #### **Optical Coupling Improvements** - 1. Pigtailed TOSAs with SMF (vertical mount for secure attachment to board; FC terminated fiber) - 2. FC receptacle vertical mount TOSA (no pigtail permits flexibility in selecting optical fiber (SMF vs MMF)) Pigtailed with horizontal mount shown (Vitex, Lasermate) FC Receptacle shown (LaserMate) #### ADN2526 EVAL_E_V2 - Improved Design #### Alternative Approach: 156 Mbps Link over POF – Test Board # Low and Medium Speed Optical Communication - Industrial Fiberoptics 650nm high speed LED communications - 155Mbps @ 75 meter w/1000μm core plastic fiber - Evaluating 4-156Mbps medium speed (IF-D98) and DC-50Mbps low-speed receiver (IF-D97) - To be evaluated for: - Optical JTAG extender - System clock - Etc. - SMU Physics has joined the effort and is evaluating devices (results will be available soon) FIGURE 5. Cross-section of fiber optic device. ### Test application: Optical JTAG extender - Development at Fermilab - Uses exclusively supporting components prequalified by BNL, LBL and JPL - Limited to ~1Mbps @ 30M by light propagation time. #### Rx Option for Gbps Completing a COTS ROSA-based design Analog Devices ADN2891 Limiting Amplifier #### FUNCTIONAL BLOCK DIAGRAM Figure 1. #### InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes) Parameters for Varshni's equation have been found for InGaAsP* Compute the 0 K band gap: Using $E_g(300 \text{ K}) = 0.949 \text{ eV}$, solve for $E_g(0 \text{ K})$ using Varshni's equation: $$E_g(0 \text{ K}) = 1.019 \text{ eV}$$ $$E_{\mathcal{S}}(T) = E_{\mathcal{S}}(0) - \frac{\alpha T^2}{T + \beta}$$ For InGaAsP*: $$\alpha = 4.9 \text{ x } 10^{-4} \text{ eV/K}^2$$ $$\beta = 327 \text{ K}$$ Plot photoluminescence wavelength using: $$\lambda = \frac{hc}{E_g(0) - \frac{\alpha T^2}{T + \beta}}$$ *Ref 1: "Temperature Dependence of Photoluminescense of n-InGaAsP" H. Temkin, et. al., Journal of Applied Physics 52 (1981) #### InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes) Measured: Max Peak ~ 1226 nm in LN2 at 75 K Measured: Max Peak ~ 1316 nm at room temperature ### Discussion