DUNE VD/PD Cryogenic Digital Optical Links DUNE Photodetector Consortium Workshop

July 27, 2021

David Christian
Greg Deuerling
Jonathan Eisch
Jason Greskoviak
Andres Quintero Parra
Alan G. Prosser

Outline

Brief review of the strategy

Testing results of TOSAs (laser diodes, monitor photodiodes)

Testing of laser driver ICs

Electrical testing

Combined electrical/optical testing

Plans for improving results

LED/Photodiode-based solutions

Sidebar: Optical spectrum of laser diodes at 295 K and 77 K

Discussion

Some Background Digital Optical Links vs Analog Optical Links

Digital Optical Links are characterized by...

Noise margin advantages (+)

Flexibility in coding (error detection/correction) (+)

Signal to quantization noise is unavoidable (-)

Much industry experience and many components (at room temperature) (+)

Time Division Multiplexing may be employed (+)

Analog Optical Links are characterized by ...

Lower cost and complexity in typical installations (+)

Higher signal to noise requirements typically imply higher power (-)

Transfer function must be well characterized to insure extraction of original signal (calibration) (-)

Strategy: Digital Optical Links Test Program 295 K and 77 K

Control of Modulation Current

(TOSAs)

COTS Laser Diode

Alternative Approach: LED/Photologic Pair Over Plastic Optical Fiber (~150 Mbps)

Plan: Bring Together for Custom Gbps Transmitter

Cumulative TOSA Laser Diode Testing Summary FP-1310-4I-LCC (4 Gbps rated)

Results obtained with 50 μ m core Multimode Fiber and Matrix LC Latch LD1 results obtained with laser mounted on ADN2526 Test Board (controlled by laser driver BSET circuit) LD2 results obtained with laser directly connected to trim pot circuit

TOSA Monitor Photodiode Testing Summary FP-1310-4I-LCC (4 Gbps rated)

FUNCTIONAL BLOCK DIAGRAM CPA VCC ADN2526 ∩IMODP ≸50Ω IMOD 50Ω ≸ OIMODN VCC CROSS POINT ADJUST DATAP DATAN **⇔IBMON** DIBIAS \$800Ω ≹200Ω €200Ω BSET MSET VEE

ADN2526 Laser Driver

Results obtained with 50 μm core Multimode Fiber and Matrix LC Latch

Testing with ADN2526 Laser Driver Custom LN2 Board – Version 1

Room temperature testing first, followed by testing in LN2 **Electrical Testing** Optical Testing (with Finisar FP-1310-4I-LCC and MMF)

ADN2526

BIAS CONTROL INPUT (BSET)				
BSET Voltage to IBIAS Gain		90		mA/V
BSET Input Resistance		1000		Ω
MODULATION CONTROL INPUT (MSET)				
MSET Voltage to IMOD Gain	50	78	100	mA/V
MSET Input Resistance		1000		Ω

FP-1310-4I-LCC Operating Current $T_{c} = 25^{\circ}C$ 32 mΑ I_{OP}

To establish

Outputs Inputs (electrical) CONFIG

Laser Diode Driver

For BSET = 0.22V (Ibias = 20 mA)

For MSET = 0.13 (Imod = 10 mA)*

^{*}Based on FP-1310-4I-FCC Measured Slope Efficiency with MMF. 7 Calculations in Extra Slides

ADN2526 Laser Driver Electrical Testing Bias Setting Performance (BSET)

Results agree nicely from one device to the next Results for one device tested show little variation when immersed in LN2

ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature

Peak to Peak Amplitude = 210 mV

10 Gbps
PRBS7 Electrical Input Pattern
MSET = 75 mV; Ibias = 19 mA

Peak to Peak Amplitude = 215 mV

ADN2526 Laser Driver Electrical Testing – Board 1 Modulation Setting Performance (MSET) and Temperature

Peak to Peak Amplitude = 321 mV

10 Gbps
PRBS7 Electrical Input Pattern
MSET = 125 mV; Ibias = 19 mA

Peak to Peak Amplitude = 321 mV

ADN2526/FP-1310-4I-LCC Combined Testing Making the Optical Connection

ADN2526/FP-1310-4I-LCC Combined Testing – Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

MSET = 30 mV Peak to Peak Amplitude = 438 μ W

MSET = 40 mV Peak to Peak Amplitude = 530 μ W

ADN2526/FP-1310-4I-LCC Combined Testing – Board 1 Optical Eye Performance at 295 K (PRBS7, 2 Gbps)

MSET = 90 mV Peak to Peak Amplitude = 1012 μ W

MSET = 100 mV Peak to Peak Amplitude = 1124 μ W

ADN2526 Board 1 Dynamic Performance Summary vs Modulation Setting

Lack of corresponding optical data was due to issues securing the laser diode to the board

ADN2526 Board 2 OMA Pattern (clock-like) at 10 Gbps

LC TOSA with pins

LC TOSA
with flexible
circuit
(impedance
controlled)

Clearly some signal integrity improvements will be desirable

Optical Coupling Improvements

- 1. Pigtailed TOSAs with SMF (vertical mount for secure attachment to board; FC terminated fiber)
- 2. FC receptacle vertical mount TOSA (no pigtail permits flexibility in selecting optical fiber (SMF vs MMF))

Pigtailed with horizontal mount shown (Vitex, Lasermate)

FC Receptacle shown (LaserMate)

ADN2526 EVAL_E_V2 - Improved Design

Alternative Approach: 156 Mbps Link over POF – Test Board

Low and Medium Speed Optical Communication

- Industrial Fiberoptics 650nm high speed LED communications
- 155Mbps @ 75 meter w/1000μm core plastic fiber
- Evaluating 4-156Mbps medium speed (IF-D98) and DC-50Mbps low-speed receiver (IF-D97)
- To be evaluated for:
 - Optical JTAG extender
 - System clock
 - Etc.
- SMU Physics has joined the effort and is evaluating devices (results will be available soon)

FIGURE 5. Cross-section of fiber optic device.

Test application: Optical JTAG extender

- Development at Fermilab
- Uses exclusively supporting components prequalified by BNL, LBL and JPL
- Limited to ~1Mbps @ 30M by light propagation time.

Rx Option for Gbps

Completing a COTS ROSA-based design Analog Devices ADN2891 Limiting Amplifier

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Parameters for Varshni's equation have been found for InGaAsP*

Compute the 0 K band gap:

Using $E_g(300 \text{ K}) = 0.949 \text{ eV}$, solve for $E_g(0 \text{ K})$ using Varshni's equation:

$$E_g(0 \text{ K}) = 1.019 \text{ eV}$$

$$E_{\mathcal{S}}(T) = E_{\mathcal{S}}(0) - \frac{\alpha T^2}{T + \beta}$$

For InGaAsP*:

$$\alpha = 4.9 \text{ x } 10^{-4} \text{ eV/K}^2$$

$$\beta = 327 \text{ K}$$

Plot photoluminescence wavelength using:

$$\lambda = \frac{hc}{E_g(0) - \frac{\alpha T^2}{T + \beta}}$$

*Ref 1: "Temperature Dependence of Photoluminescense of n-InGaAsP" H. Temkin, et. al., Journal of Applied Physics 52 (1981)

InGaAsP Spectral Shift Estimate (1310 nm Laser Diodes)

Measured: Max Peak ~ 1226 nm in LN2

at 75 K

Measured: Max Peak ~ 1316 nm at room temperature

Discussion