GaAs power-over-fiber receivers at cryogenic temperatures

- Previously, we studied III-V PV cells at high temperatures under an ARPA-E program
- Key takeaways
 - Conversion efficiency drops rapidly as T increases due to exponential increase in dark current
 - Quantum efficiency remains high due to long diffusion lengths
 - Devices behave well up to 500°C, obeying conventional models with minimal modifications

Fig. 11. Temperature-dependent LIV measurements of the GaAs solar cell taken at a light intensity of 1 sun under the AM1.5D spectrum. As the temperature is increased, we observe an increase in J_{SC} and decrease in V_{OC} .

$$J = J_{01} \left(e^{q(V - JR_S)/kT} - 1 \right) + J_{0_2} \left(e^{q(V - JR_S)/2kT} - 1 \right)$$

$$+ \frac{(V - JR_S)}{R_{\text{shunt}}} - J_L$$

$$J_{01} \alpha T^3 e^{-E_g/kT}$$

$$J_{02} \alpha T^{3/2} e^{-E_g/2kT}.$$
(3)

GaAs power-over-fiber receivers at cryogenic temperatures

- Room temperature- efficiency up to 60% reported for laser photovoltaic power conversion!
- Opportunity for ultrahigh power conversion efficiency (>60%) at liquid Ar temperature
 - Note: III-V lasers are significantly more efficient at cryogenic than at room temperature!

Key areas of investigation

- Design and fabrication of single- and multi-junction devices with useful voltage operating points for:
 - Powering digital and/or analog electronics
 - Biasing detectors
- What are theoretical and practical limits of conversion efficiency at ~87K?
- Can we harness strong photon recycling effects at cryogenic temperatures?

Methods used in my lab

- MBE for photovoltaic cell growth
 - Shared MOCVD also available
- Characterization of composition, strain, defects, transport, optical properties
- Device fabrication, testing, modeling

