Estimated FELIX FW resources required for VD (with FW extensions to Ethernet)

Konstantinos Manolopoulos Ethernet Based Readout for FD-VD

August 2nd 2021

Outline

- System Requirements for Vertical Drift
- FELIX firmware resources
- **DUNE Hit Finding firmware resources**
- **DUNE-FELIX** firmware with ethernet extension
- Summary

System requirements for VD

- Data arrive on UDP packets containing a set of frames of 64 channels
 - 1 channel = 14-bit ADC samples @2MSamples/s
 - 1 frame = 1clock tick
- 1 FPGA should accommodate 2560 channels
 - ~70% link utilization for a 100Gb link
- In DUNE Single Phase Trigger Primitive Generation firmware handles
 - 10 fibres per APA @9.6Gbps
 - Each fibre corresponds to 256 wires
 - 14-bit ADC samples@2MSamples/s
 - 10 "Hit Finder" processors operating in parallel (1 per fibre) @250MHz

System requirements for VD

- This approach of parallel processing is ideal for FPGA implementation
- The concept is not tied to Single Phase electronics and can be used to process data from the Vertical Drift
- We do need understand the exact type of input we'll get from VD and decide how it can be used to feed data to the parallel HF processors

FELIX firmware resources

- Generic bi-directional i/f between frontend and pc
- 2 link protocols for data transfer
 - GBT/Versatile link
 - FULLmode protocol (single wide data stream)
- Jumbo Block Super Chunk (JBSC)
 - Super Chunk: packed together Chunks to minimize memory-copy effort
 - Transfer data to host with up to 4k DMA blocks

Target FPGA: xcku115-flvf1924-2-e					
tilization		Post-Synthesis Post-Implementation			
			Graph Table		
Resource	Utilization	Available	Utilization %		
LUT	51183	663360	7.72		
LUTRAM	367	293760	0.12		
FF	90208	1326720	6.80		
BRAM	275	2160	12.73		
10	133	728	18.27		
GT	28	64	43.75		
BUFG	46	1248	3.69		
ммсм	5	24	20.83		
PCIe	2	6	33.33		

FELIX – DUNE TPG integration

- FELIX and TPG firmware domains kept separate
 - TPG as a "pod" inside the FELIX infrastructure
 - Added an IPbus-Wupper bridge block to use unmodified TPG firmware and software

Advantages

- Very thin layer of custom fw/sw (the bridge)
- Full re-use of existing FELIX and TPG tools
- Seamless switch between TPG dev boards and Felix
- Minimal resource impact

DUNE Hit Finding Processor Architecture

DUNE Hit Finding block diagram for 1 optical link

DUNE TPG Firmware

- Each Hit Finding processor uses 4 TPG cores
 - Each core processing 64 channels
 - Each core utilizes a *Pedestal Subtraction* block, a *32-tap FIR filter* and a *Hit Finder*
 - Currently using a fixed set of coefficients for all FIRs and have allowed Vivado to optimize some of the DSPs away
 - Max no of needed DSPs: 4 TPGs x 32 DSPs x 10 HF = 1280 DSPs

2/08/2020

DUNE HF required resources

- DUNE-FELIX design is split in 2 Super Logic Regions (SLRs) with 5 optical link & 5 HF processors in each SLR
- Following table presents resource utilisation of 5 Hit Finding processors (FLX fw is not present)

Target FPGA: zu9eg (ZCU102 eval board)

tilization	Post-Synthes	is Post-Im	plementation
		G	raph Table
Resource	Utilization	Available	Utilization %
LUT	33420	274080	12.19
LUTRAM	1061	144000	0.74
FF	60072	548160	10.96
BRAM	238	912	26.10
DSP	360	2520	14.29
10	15	328	4.57
GT	1	24	4.17
BUFG	18	404	4.46
ммсм	2	4	50.00

DUNE-FLX firmware with Ethernet extension

- Minimal change needed: UDP→AXIs block implemented and integrated in the FLX fw
- Need to either use Xilinx MAC and PHY cores or to implement custom ones (not trivial!)
- Xilinx MAC/PHY cores depending on the FPGA series are not always free
 - In VU PHY is free but MAC with FEC is not
 - In VUP the 100G PHY and MAC with FEC are free
 - 10G PHY is also free but not 25G/40G/50G
 - In Versal the MAC/PHY are free for 10G/25G/40G/50G/100G
 - If there's a need to use many 100G cores in a FPGA we may still need a soft PHY/MAC since the hard cores are limited

DUNE-FLX firmware with Ethernet extension

- On VUP there are two options available
 - Use the RAL/TD 10G UDP core along with a custom Soft-MAC and the free Xilinx 10G PHY
 - Use the RAL/TD UDP core along with the free Xilinx 100G MAC/PHY

Resource utilisation without PHY/MAC

Device	Rate	LUTs	Regs	BRAM
Virtex7	10G	5789	7045	19
Zync RFSoc US+	100G	12381	21573	57

- Bare in mind that moving between MACs (and to some extend PHYs) from different devices is not trivial
 - Testing the same system in different FPGAs/boards will require a lot of extra effort

Estimated total resources

- Bringing everything together the following table shows the estimated resources for
 - FELIX firmware +10 x Hit Finding processors + 1 x 100G UDP core

Estimated Resources for DUNE-FLX fw with Ethernet extension

Resource	Utilisation
LUT	130404
LUTRAM	2489
FF	231925
BRAM	808
DSP	720 (max 1280)
PCIe	2

Summary

- Presented the resource requirements for the FELIX fw and the Hit Finding processors
- Options for the VD Ethernet extension with an estimated resource utilization for a 100G solution targeting the VUP family
- DUNE Trigger Primitive Generation is an ongoing effort → required resources will increase slightly in the near future
 - This will mostly affect LUT, LUTRAMs and FFs
- The FPGA choice will also affect both final resources and actual system cost
 - MAC/PHY IP cores are not always free
 - Depending on the final design choice there might not be enough hard cores and using soft cores means extra resources

Backup slides

14

FELIX firmware

