

Automatic Leptonic Tensor Generation for BSM Models

Diego Lopez Gutierrez Dr. Josh Isaacson, Theory Department, PPD Final Presentation - SIST 11 August 2021

The Standard Model of Particle Physics

- Theory of the EM, weak and strong interactions.
- Describes most phenomena in nature to high accuracy.
- Is not complete.
 - Gravity.
 - Dark matter and dark energy.
 - Matter-antimatter asymmetry in the universe.
 - Neutrino oscillations.
 - And many more.

Beyond the Standard Model (BSM) Theories

Cross Section

- Experimental observable.
- Effective area that particle B presents to A when colliding.
- Let A_1, A_2 collide and produce B_1, B_2, \dots, B_n . Then, $\sigma(A_1, A_2 \rightarrow B_1, B_2, \dots, B_n) \propto \int d\Pi_n |M|^2$.
- $M \rightarrow$ Amplitude of process, related to Feynman diagrams.
- $d\Pi_n \rightarrow$ Phase space, allowed states depending on $\overrightarrow{p_i}$ and E_i .

🗲 Fermilab

Lagrangian Formalism and QED

- Equivalent to Newtonian Formalism from intro Physics classes.
- Fundamental quantity: Lagrangian *L*, contains all information about a theory.
- Quantum Electrodynamics (QED): quantum field theory that governs all electromagnetic interactions.

Free fermions

$$L_{\text{QED}} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \sum_{\text{fermions}} \overline{\psi}_f (i\gamma^{\mu}\partial_{\mu} - m_f)\psi_f - Q_f e\overline{\psi}\gamma^{\mu}\psi A_{\mu}$$
Photon interacts with
free photon
propagates
in space.
Free photon

🗲 Fermilab

Feynman Diagrams

- Pictorial representation of spacetime processes.
- Related to interaction term L_{int} in L.
- In QED, Photon field $L_{\rm int} = \sum Q_f e \overline{\psi}_f \gamma^\mu \psi_f A_\mu.$ fermions Antifermion/fermion fields • Example: $e^-e^+ \rightarrow \gamma \rightarrow \mu^-\mu^+$ e^+ p_2 p_3 $\propto Q_f e \subset L_{\text{int}}$ q μ^+ e.

🚰 Fermilab

QED Feynman Rules

- Can get *M* from Feynman diagrams.
- Feynman Rules: express diagrams mathematically.

🚰 Fermilab

QED Feynman Rules

• Getting *M* from Feynman diagram: $e^-e^+ \rightarrow \mu^-\mu^+$

辈 Fermilab

9 8/11/2021 Diego Lopez Gutierrez | Automatic Leptonic Tensor Generation for BSM Models

Hadronic and Leptonic Tensor

- $M \rightarrow |M|^2$
- In general,

• For
$$e^-e^+ \rightarrow \mu^-\mu^+$$
,

Validation Methods

- To validate results with literature, we need:
 - $\sigma = \int \mathrm{d}\Pi \; |M|^2$
 - $H^{\mu\nu}: |M|^2 = L_{\mu\nu}H^{\mu\nu}$
- *H^{μν}* comes from Noemi Rocco's *Ab Initio* Calculations of Lepton-Nucleus Scattering (DOI: <u>10.3389/fphy.2020.00116</u>)

🗲 Fermilab

Validation Methods

- σ calculation: too complicated, use numerical methods.
- Multichannel Monte Carlo phase space integrator
 - Random sampling to estimate integral.
 - Relies on different prob. distributions $g_i(x)$ (channels) each with prob. α_i .
 - α_i can be optimized to reduce variance (error).
- Numerical integral:

$$g(x) = \sum_{i} \alpha_{i} g_{i}(x); w(x) = \frac{f(x)}{g(x)}$$
$$\langle w \rangle = \int w(x) g(x) dx = \int f(x) dx$$

[©] www.scratchapixel.com

Results

• Validation results of 2 SM processes:

$$- e^{-}p^{+} \rightarrow e^{-}p^{+}$$
$$- \nu_{e}p^{+} \rightarrow \nu_{e}p^{+}$$

- Results from previous version of program. Main differences:
 - Nucleus/hadrons treated as point-like particles ($H^{\mu\nu}$).
 - Phase space integration (Rambo)
- Using $L_{\mu\nu}$, calculated $|M|^2 \operatorname{vs} \cos(\theta)$ for $E_{CM} = \{20, 60, 100, 140, 180, 200\}$ (GeV), and $\sigma \operatorname{vs} E_{CM}$.

 $e^-p^+ \rightarrow e^-p^+$: σ vs $E_{\rm CM}$

🛟 Fermilab

15 8/11/2021 Diego Lopez Gutierrez | Automatic Leptonic Tensor Generation for BSM Models

 $\nu_e p^+ \rightarrow \nu_e p^+$: σ vs $E_{\rm CM}$

🛟 Fermilab

16 8/11/2021 Diego Lopez Gutierrez | Automatic Leptonic Tensor Generation for BSM Models

Conclusion and Future Steps

- Numerical and analytic results in good agreement.
- Promising for more complex SM processes as well as BSM models.
- Future steps:
 - Produce plots from newest version (multichannel, nuclear physics effects)
 - Test neutrino trident processes
 - Validate results from literature
 - Produce distributions to look for in DUNE based on BSM models that explain MiniBooNE excess.

Thank you

