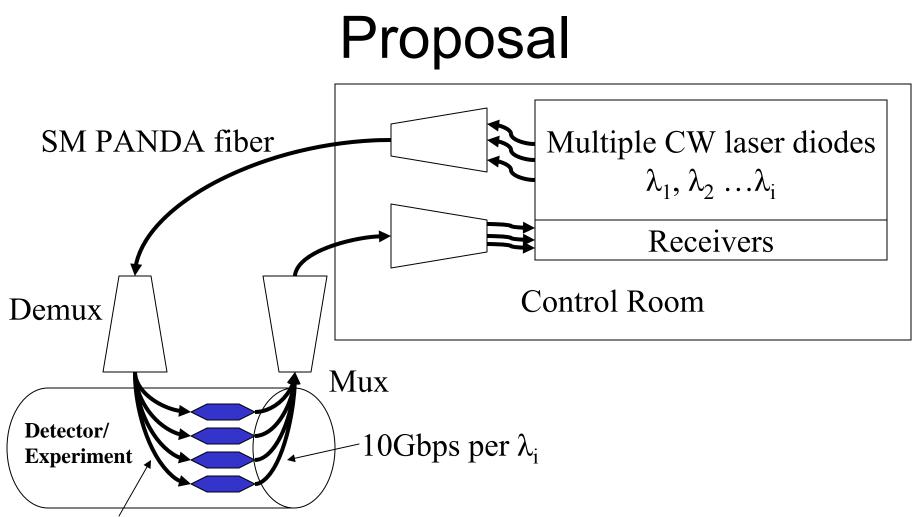
Proposal WDM-based Optical Links for Next Generation HEP

Alan Sugg Vega Wave Systems, Inc. 11/15/11


11/15/2011

Proprietary

General Link Requirements

- Next generation HEP experiment requirements:
 - Flexible data rates (10Gbps up to 200Gbps).
 - High reliability in a range of radiation environments.
 - Low power consumption
 - Small size (≤2-3cm²)
 - Moderate cost:
 - Part cost COTS where possible (use industry standards Ethernet, ITU, etc.)
 - Design and testing cost- low capital equipment (Test equipment cost becomes prohibitive with speed >10Gbps).
 - Installation and maintenance costs low fiber count, small connectors/devices

SM PANDA fiber

Wavelength Division Multiplexing (WDM) at 10Gbps/channel with external CW laser sources and modulators at the experiment.

Vega Wave 3

WDM

- Several choices for the WDM specification:
- All wavelength channel spacings are defined by industry standards in a wavelength range of 1270nm through 1610nm.
 - CWDM (20nm spacing) (1270nm-1610nm, ITU G.694.2)
 - WDM (100GHz- 0.8nm, or 200GHz channel spacing ITU G.694.1, 1528.38nm-1622.25nm)
 - DWDM (25-50GHz, ITU G.671)

Advantages/Features

- Lower Capital Costs: Test equipment costs lower for 10Gbps channel data rates.
- Minimized Cable/Infrastructure: WDM minimizes cabling from the control room.
- Channel Speed Upgrade: Modulators could upgrade speeds to 25Gbps 'easily' – drive electronics are the limitation.
- **Reliability:**
 - Channel redundancy possible for improved reliability.
 - External modulators
- Reduced Size:
 - Demux at the detector outer layers, distribute fibers to various layers/locations on the detector.
 - Demux size is less critical if located outside the detector
 - Integrated modulators possible.
- COTS Components:
 - Lasers, receivers could be easily modified COTS parts.
 - Modulators may need some customization
 - Demux/mux could be COTS.

11/15/2011

Design Issues

- > How to mux/demux the wavelength channels within the size and power budget?
 - Demux is more difficult, depending upon power budget.
 - Demux Options
 - WDM:
 - Arrayed Waveguide Grating (AWG)
 - * Big if SiO_2 is used. (150mm x 60mm)
 - Needs stable temperature usually incorporates a heater/TEC, otherwise it is a passive device.
 - Could use Si (<2cm²), or InP. Not COTS, but could be custom manufactured.
 - CWDM
 - Bulk filters
 - Can be compact if placed on Si Optical Bench (commercial parts available for 4-channel LX4 10Gbps Ethernet).
 - Needs no temperature control
- Modulator:
 - Type (MZ most likely)
 - Material (Si, InP?)
 - Level of integration (single channel, multiple channels)
 - Wavelength range.
- Drive Electronics

Suggestions

- > Use WDM at 100GHz or 200GHz channel spacing.
 - 1550nm wavelength range
 - Better match for modulator wavelength range.
- > Use silicon-based AWG
 - Smaller size.
 - Need to test temperature stability, may need moderate temperature control.
- Modulator choice:
 - InP Mach-Zehnder or
 - Si Mach-Zehnder using current injection (not depletion mode).
- Laser diodes 50-100mW external FBG stabilized Fabry-Perot laser diodes.
 - FBGs readily available

