

Cable 1175 Air Brake Failure: Broken Wire Sensor Investigation

Rick Bloemhard - LBNL (Electrical Engineer II)
Elizabeth Lee – LBNL (Manufacturing Engineer and CAM Deputy)
Hugh Higley - LBNL (Affiliate)
Mike Naus – LBNL (302.2.03 L3 Deputy)
Andy Lin – LBNL (Engineering Technician)
Carlos Perez – LBNL (Engineering Technician)
Ian Pong – LBNL (302.2.03 L3 and CAM)

26 July 2021

Overview

- ~335 m into the production run for AUP cable 1175, the air brake for the cable bay fired and stopped the run
 - Sudden stop created a crossover at the 335th m and subsequent cable collapse (~.25 m long)
 - Cable does not meet the minimum unit length specified by AUP
 - No broken wires (strands) found on machine, even though the primary system that could trigger this type of stop is the machine's broken wire sensor

Broken Wire Sensor - Overview

- If a wire hits the ring loop, the brake will fire if the sensor is on
 - Will also engage the brake if another foreign object contacts the ring or another bar contact on the floor
 - Can be turned off

Broken Wire Sensor - Inspection Scope

- Identify electrical control mechanism for air brake system
 - Physical inspection (as-built)
 - ☐ Find documents in LBNL Document Control Center
- Assess all electrical components and wiring harness for evidence of damage
 - Check electrical connections for good contact
 - Check integrity of insulation and cover bald spots in wiring
- Verify that operator controls work normally to control the air brake
- Re-verify that excess shock, lubricant, etc. do not trigger air brake

Broken Wire Sensor - Inspection Results

- Identify electrical control mechanism for air brake system
 - Physical inspection (as-built)
 - ☐ Find documents in LBNL Document Control Center
- Assess all electrical components and wiring harness for evidence of damage
 - ✓ Check electrical connections for good contact
 - Check integrity of insulation and cover bald spots in wiring
- ✓ Verify that operator controls work normally to control the air brake
- Re-verify that excess shock, lubricant, etc. do not trigger air brake

Electrical Inspection Results

- No evidence of thermal or electrical damage to any wiring components
- No shorts or poor connections found
 - All connections checked and re-tightened by QEW
- Main sensor wire had one exposed pigtail, but not in a location that is likely to cause a fault
 - "That pigtail had a small exposed tip of copper that could short against the box depending upon vibrations, etc. and spectacular bad luck. I don't think this is what caused the fault, but I none-the-less covered the end with some electrical tape"
- Main sensor ring's insulation block is ok
 - Cleaned to remove any excess oil

Additional Lines of Inquiry (Low to High Risk)

- Double check the pneumatic pressure at the time of failure
 - a. Immediate action
- 2. Air cylinder and gas spring inspection
 - a. 1-3 month time horizon
 - b. System removal/reinstallation required
- 3. Motor drive removal and inspection
 - a. Long term monitoring
 - System removal/reinstallation required
 - Schematic not present in DCC
 - d. Calibration procedure for the motor drive not present in DCC
 - QEW able to inspect surface level panel components, but not the drive circuit/power capacitor bank

Conclusion

- It is electrically safe to operate the machine with the broken wire sensor off
- Brake controls and broken wire sensor are working normally as of the morning of July 23rd
 - Machine seems to be operating normally with sensor turned off
- Root cause not identified at this time

LBNL Cabling Team will continue cable fabrication with the sensor turned off and pursue additional lines of inquiry, as necessary

Control Mechanism Identification

- Solenoid valve (air cylinder control) triggered by sensing/timing relay module
 - Lathe body, lathe platform connected to ground
 - Ring sensor and floor sensor are energized at 12 V
 - Shorting to ground will disengage lathe clutch and fire the air brake
- No other instrumentation in control panel box (module + one secondary relay)
- No documentation or schematic found for sensing circuit

