ECAL Studies in ND-GAr:

Analysis of Exclusive Event Categories using Truth Information

Kelly Nagel

Advisor: Vivek Jain

University at Albany

August 2nd, 2021

Introduction

Which parts of the ECAL are necessary? How should we answer this?

New ECAL geometry (Eldwan Brianne)

- ECal12sides_42l_SPY_v3_wMuID
- 42 layers of Pb-Scintillator sandwich ($\sim 10.5 X_0$)
 - Scintillator: 8 layers, each 0.5 cm thick, and 34 layers, each 1 cm thick
 - Pb 8 layers, each 0.7 mm thick, 34 layers, each 1.4 mm thick
- Barrel has 12 fold symmetry
- Newly optimized SPY magnet and cryostat as the pressure vessel
 - No extra material between the ECAL and TPC Endcaps are pulled in by $\sim 40~\text{cm}$

coils

Studying the effect of removing different parts of the ECAL, done by ignoring neutrons and photons in those different parts

Looking at specific event types, depending on whether CC/NC events, v type, and number of pions

Using (FHC) ParamSim ntuples: /pnfs/dune/persistent/users /ebrianne/

ProductionSamples/ND-GAr/nd_hall_mpd_only_ECal12sides_42l_SPY_v3_wMuID/

Eldwan put flags in the ntuple that tell you where the particle stopped e.g., in the ECAL, TPC, or went through the ECAL

Using only truth information

Using the ΔP metric:

 $\Delta P = |\text{Vector sum of } p \text{ of all particles from the primary vertex}| - |p_{inc}||$

Also comparing the modes and number of n and γ in different categories

Just looking at particles emerging from the neutrino vertex i.e., throwing out events with strange/charm baryons and anti-baryons

These metrics get messed up because I don't follow the decay chain

In resonance events, the decay products of the resonance particles are listed as primaries, not the resonance particles themselves

Only using daughter γ from primary π^0 in the ΔP calculation, not π^0 themselves

Event categories

Charged current ν_{μ} events (152722)

- with no pions (55213)
- with one π^{\pm} and no π^{0} (39451)
- with one π^0 and no π^{\pm} (15984)
- others (42074)

Charged current $\bar{\nu}_{\mu}$ events (6496)

- with no pions (2014)
- with one π^{\pm} and no π^{0} (1666)
- with one π^0 and no π^{\pm} (561)
- others (2255)

Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events (50512)

- with no pions (16280)
- with one π^{\pm} and no π^{0} (9629)
- with one π^0 and no π^{\pm} (9672)
- others (14931)

Average number of n (and γ) in different categories

	$CC u_{\mu}$	CC $ar{ u}_{\mu}$	NC ν_{μ}	NC $\bar{ u}_{\mu}$
No pions	2.1 n (0.18 γ)	3.3 n (0.20 γ)	2.5 n (0.20 γ)	2.6 n (0.23 γ)
$1\pi^\pm$ and no π^0	1.9 n (0.55 γ)	2.0 n (0.78 γ)	2.0 n (0.65 γ)	2.1 n (0.67 γ)
$1\pi^0$ and no π^\pm	1.6 n (2.3 γ)	2.8 n (2.4 γ)	2.0 n (2.2 γ)	2.1 n (2.3 γ)
Others	2.1 n (4.1 γ)	2.6 n (4.7 γ)	2.3 n (4.0 γ)	2.6 n (4.5 γ)

Error for CC ν_{μ} with 0 pions: 0.01 (n) < 0.01 (γ)

Error for NC ν_{μ} with 0 pions: 0.03 (n) < 0.01 (γ)

Charged Current ν_{μ} Events

Modes for CC ν_{μ} events

Incident ν_{μ} momentum

Incoming muon neutrino momentum for CC events with 1 neutral pion

Incoming muon neutrino momentum for CC events with 1 charged pion

Incoming muon neutrino momentum for other CC events

ΔP for all CC ν_{μ} events – full CALO

ΔP for CC ν_{μ} events – full CALO (no n nor γ ignored)

ΔP for CC ν_{μ} events – ignoring n and γ in the endcap

ΔP for CC ν_{μ} events – ignoring n and γ in the upstream barrel

ΔP for CC ν_{μ} events – ignoring n and γ in endcap and upstream barrel

ΔP for CC ν_{μ} events – ignoring n and γ in the downstream barrel

Fit attempts – CC events with no pions

Conclusions

The selected categories are all affected similarly by removal of different CALO pieces (except downstream barrel case)

Comparing the energy of the n and γ in the different categories could provide insight into the behavior of the ΔP plots

Future work:

Finding the optimal fit for the ΔP plots

Already tried CrystalBall function – try a modified version e.g., CrystalBall and an exponential function

Extras

Number of neutrons for 0 pion events

Number of neutrons in cc mu events with 0 pions

Number of neutrons in nc mu events with 0 pions

Number of neutrons in cc antimu events with 0 pions

Number of neutrons in nc antimu events with 0 pions

Number of neutrons for $1 \pi^{\pm}$ events

Number of neutrons in cc mu events with 1 charged pion

Number of neutrons in nc mu events with 1 charged pion

Number of neutrons in cc antimu events with 1 charged pion

Number of neutrons in nc antimu events with 1 charged pion

Number of neutrons for $1 \pi^0$ events

Number of neutrons in cc mu events with 1 neutral pion

Number of neutrons in nc mu events with 1 neutral pion

Number of neutrons in cc antimu events with 1 neutral pion

Number of neutrons in nc antimu events with 1 neutral pion

Number of neutrons for other events

Number of neutrons in other nc mu events

Number of neutrons in other cc antimu events

Number of neutrons in other nc antimu events

Modes for events with no pions

Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC

Modes for events with 1 π^{\pm}

Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC

Modes for events with 1 π^0

Modes for other events

Modes of other cc_mu events

Modes of other nc_mu events

Modes of other cc_antimu events

Modes of other nc_antimu events

Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC

Incident ν_{μ} momentum – 0 pions

Incoming muon neutrino momentum for NC events with 0 pions

Incoming muon anti-neutrino momentum for CC events with 0 pions

Incoming muon anti-neutrino momentum for NC events with 0 pions

Incident ν_{μ} momentum – 1 π^{\pm} (no π^{0})

Incoming muon neutrino momentum for NC events with 1 charged pion $\,$

Incoming muon anti-neutrino momentum for CC events with 1 charged pion

Incoming muon anti-neutrino momentum for NC events with 1 charged pion

Incident ν_{μ} momentum – $1 \pi^0$ (no π^{\pm})

Incoming muon neutrino momentum for NC events with 1 neutral pion

Incoming muon anti-neutrino momentum for CC events with 1 neutral pion

Incoming muon anti-neutrino momentum for NC events with 1 neutral pion

Incident ν_{μ} momentum – others

Incoming muon neutrino momentum for other NC events

Incoming muon anti-neutrino momentum for other CC events

Incoming muon anti-neutrino momentum for other NC events

DeltaP for all CC $\bar{\nu}_{\mu}$ events

DeltaP for all NC ν_{μ} events

DeltaP for all NC $\bar{\nu}_{\mu}$ events

Charged Current ν_{μ} Events

Charged current ν_{μ} events – no pions

All particles

No (γ or n in) endcap

No (γ or n in) upstream barrel

No (γ or n in) downstream barrel

No (γ or n in)
upstream barrel nor
endcap (dashed)

Charged current ν_{μ} events – $1 \pi^{\pm}$ (no π^{0})

All particles

No endcap

No upstream barrel

No downstream barrel

No upstream barrel nor endcap (dashed)

Charged current ν_{μ} events – $1 \pi^0$ (no π^{\pm})

All particles

No endcap

No upstream barrel

No downstream barrel

Charged current ν_{μ} events – others

All particles

No endcap

No upstream barrel

No downstream barrel

Charged Current $\bar{\nu}_{\mu}$ Events

Charged current $\bar{\nu}_{\mu}$ events – no pions

All particles

No endcap

No upstream barrel

No downstream barrel

Charged current $\bar{\nu}_{\mu}$ events – 1 π^{\pm} (no π^{0})

All particles

No endcap

No upstream barrel

No downstream barrel

Charged current $\bar{\nu}_{\mu}$ events – $1 \pi^0$ (no π^{\pm})

All particles

No endcap

No upstream barrel

No downstream barrel

Charged current $\bar{\nu}_{\mu}$ events – others

All particles

No endcap

No upstream barrel

No downstream barrel

Neutral Current ν_{μ} & $\bar{\nu}_{\mu}$ Events

Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – no pions

All particles

No endcap

No upstream barrel

No downstream barrel

Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – 1 π^{\pm} (no π^{0})

All particles

No endcap

No upstream barrel

No downstream barrel

Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – 1 π^0 (no π^{\pm})

All particles

No endcap

No upstream barrel

No downstream barrel

Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – others

All particles

No endcap

No upstream barrel

No downstream barrel

DeltaP_noBRF v number of neutrons- no pions

DeltaP_noBRF v number of neutrons – 1 charged pion

DeltaP_noBRF v number of neutrons – 1 neutral pion

DeltaP_noBRF v number of neutrons – others

DeltaP_noBRF vs mode – no pions

DeltaP_noBRF v mode – 1 charged pion

DeltaP_noBRF v mode – 1 neutral pion

DeltaP_noBRF v mode – others

Why does the all primary case have a large width for ΔP ? These plots have bin width = 25 MeV

Could it be due to Fermi Motion?

