ECAL Studies in ND-GAr: Analysis of Exclusive Event Categories using Truth Information Kelly Nagel Advisor: Vivek Jain University at Albany August 2nd, 2021 #### Introduction Which parts of the ECAL are necessary? How should we answer this? #### New ECAL geometry (Eldwan Brianne) - ECal12sides_42l_SPY_v3_wMuID - 42 layers of Pb-Scintillator sandwich ($\sim 10.5 X_0$) - Scintillator: 8 layers, each 0.5 cm thick, and 34 layers, each 1 cm thick - Pb 8 layers, each 0.7 mm thick, 34 layers, each 1.4 mm thick - Barrel has 12 fold symmetry - Newly optimized SPY magnet and cryostat as the pressure vessel - No extra material between the ECAL and TPC Endcaps are pulled in by $\sim 40~\text{cm}$ coils Studying the effect of removing different parts of the ECAL, done by ignoring neutrons and photons in those different parts Looking at specific event types, depending on whether CC/NC events, v type, and number of pions Using (FHC) ParamSim ntuples: /pnfs/dune/persistent/users /ebrianne/ ProductionSamples/ND-GAr/nd_hall_mpd_only_ECal12sides_42l_SPY_v3_wMuID/ Eldwan put flags in the ntuple that tell you where the particle stopped e.g., in the ECAL, TPC, or went through the ECAL Using only truth information Using the ΔP metric: $\Delta P = |\text{Vector sum of } p \text{ of all particles from the primary vertex}| - |p_{inc}||$ Also comparing the modes and number of n and γ in different categories Just looking at particles emerging from the neutrino vertex i.e., throwing out events with strange/charm baryons and anti-baryons These metrics get messed up because I don't follow the decay chain In resonance events, the decay products of the resonance particles are listed as primaries, not the resonance particles themselves Only using daughter γ from primary π^0 in the ΔP calculation, not π^0 themselves ### Event categories Charged current ν_{μ} events (152722) - with no pions (55213) - with one π^{\pm} and no π^{0} (39451) - with one π^0 and no π^{\pm} (15984) - others (42074) #### Charged current $\bar{\nu}_{\mu}$ events (6496) - with no pions (2014) - with one π^{\pm} and no π^{0} (1666) - with one π^0 and no π^{\pm} (561) - others (2255) #### Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events (50512) - with no pions (16280) - with one π^{\pm} and no π^{0} (9629) - with one π^0 and no π^{\pm} (9672) - others (14931) #### Average number of n (and γ) in different categories | | $CC u_{\mu}$ | CC $ar{ u}_{\mu}$ | NC ν_{μ} | NC $\bar{ u}_{\mu}$ | |---------------------------|----------------|-------------------|----------------|---------------------| | No pions | 2.1 n (0.18 γ) | 3.3 n (0.20 γ) | 2.5 n (0.20 γ) | 2.6 n (0.23 γ) | | $1\pi^\pm$ and no π^0 | 1.9 n (0.55 γ) | 2.0 n (0.78 γ) | 2.0 n (0.65 γ) | 2.1 n (0.67 γ) | | $1\pi^0$ and no π^\pm | 1.6 n (2.3 γ) | 2.8 n (2.4 γ) | 2.0 n (2.2 γ) | 2.1 n (2.3 γ) | | Others | 2.1 n (4.1 γ) | 2.6 n (4.7 γ) | 2.3 n (4.0 γ) | 2.6 n (4.5 γ) | Error for CC ν_{μ} with 0 pions: 0.01 (n) < 0.01 (γ) Error for NC ν_{μ} with 0 pions: 0.03 (n) < 0.01 (γ) # Charged Current ν_{μ} Events # Modes for CC ν_{μ} events # Incident ν_{μ} momentum Incoming muon neutrino momentum for CC events with 1 neutral pion Incoming muon neutrino momentum for CC events with 1 charged pion Incoming muon neutrino momentum for other CC events # ΔP for all CC ν_{μ} events – full CALO ### ΔP for CC ν_{μ} events – full CALO (no n nor γ ignored) ### ΔP for CC ν_{μ} events – ignoring n and γ in the endcap ### ΔP for CC ν_{μ} events – ignoring n and γ in the upstream barrel ### ΔP for CC ν_{μ} events – ignoring n and γ in endcap and upstream barrel #### ΔP for CC ν_{μ} events – ignoring n and γ in the downstream barrel ## Fit attempts – CC events with no pions #### Conclusions The selected categories are all affected similarly by removal of different CALO pieces (except downstream barrel case) Comparing the energy of the n and γ in the different categories could provide insight into the behavior of the ΔP plots #### Future work: Finding the optimal fit for the ΔP plots Already tried CrystalBall function – try a modified version e.g., CrystalBall and an exponential function ### Extras ### Number of neutrons for 0 pion events Number of neutrons in cc mu events with 0 pions Number of neutrons in nc mu events with 0 pions Number of neutrons in cc antimu events with 0 pions Number of neutrons in nc antimu events with 0 pions #### Number of neutrons for $1 \pi^{\pm}$ events Number of neutrons in cc mu events with 1 charged pion Number of neutrons in nc mu events with 1 charged pion Number of neutrons in cc antimu events with 1 charged pion Number of neutrons in nc antimu events with 1 charged pion #### Number of neutrons for $1 \pi^0$ events Number of neutrons in cc mu events with 1 neutral pion Number of neutrons in nc mu events with 1 neutral pion Number of neutrons in cc antimu events with 1 neutral pion Number of neutrons in nc antimu events with 1 neutral pion #### Number of neutrons for other events #### Number of neutrons in other nc mu events #### Number of neutrons in other cc antimu events Number of neutrons in other nc antimu events ### Modes for events with no pions Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC #### Modes for events with 1 π^{\pm} Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC ### Modes for events with 1 π^0 #### Modes for other events Modes of other cc_mu events Modes of other nc_mu events Modes of other cc_antimu events Modes of other nc_antimu events Modes: 0 – QE; 1 – RES; 2 – DIS; 3 – COH; 10 - MEC ## Incident ν_{μ} momentum – 0 pions Incoming muon neutrino momentum for NC events with 0 pions Incoming muon anti-neutrino momentum for CC events with 0 pions Incoming muon anti-neutrino momentum for NC events with 0 pions # Incident ν_{μ} momentum – 1 π^{\pm} (no π^{0}) Incoming muon neutrino momentum for NC events with 1 charged pion $\,$ Incoming muon anti-neutrino momentum for CC events with 1 charged pion Incoming muon anti-neutrino momentum for NC events with 1 charged pion # Incident ν_{μ} momentum – $1 \pi^0$ (no π^{\pm}) Incoming muon neutrino momentum for NC events with 1 neutral pion Incoming muon anti-neutrino momentum for CC events with 1 neutral pion Incoming muon anti-neutrino momentum for NC events with 1 neutral pion ## Incident ν_{μ} momentum – others Incoming muon neutrino momentum for other NC events Incoming muon anti-neutrino momentum for other CC events Incoming muon anti-neutrino momentum for other NC events # DeltaP for all CC $\bar{\nu}_{\mu}$ events ## DeltaP for all NC ν_{μ} events # DeltaP for all NC $\bar{\nu}_{\mu}$ events # Charged Current ν_{μ} Events ## Charged current ν_{μ} events – no pions All particles No (γ or n in) endcap No (γ or n in) upstream barrel No (γ or n in) downstream barrel No (γ or n in) upstream barrel nor endcap (dashed) # Charged current ν_{μ} events – $1 \pi^{\pm}$ (no π^{0}) All particles No endcap No upstream barrel No downstream barrel No upstream barrel nor endcap (dashed) # Charged current ν_{μ} events – $1 \pi^0$ (no π^{\pm}) All particles No endcap No upstream barrel No downstream barrel ### Charged current ν_{μ} events – others All particles No endcap No upstream barrel No downstream barrel # Charged Current $\bar{\nu}_{\mu}$ Events ### Charged current $\bar{\nu}_{\mu}$ events – no pions All particles No endcap No upstream barrel No downstream barrel # Charged current $\bar{\nu}_{\mu}$ events – 1 π^{\pm} (no π^{0}) All particles No endcap No upstream barrel No downstream barrel # Charged current $\bar{\nu}_{\mu}$ events – $1 \pi^0$ (no π^{\pm}) All particles No endcap No upstream barrel No downstream barrel ### Charged current $\bar{\nu}_{\mu}$ events – others All particles No endcap No upstream barrel No downstream barrel Neutral Current ν_{μ} & $\bar{\nu}_{\mu}$ Events ### Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – no pions All particles No endcap No upstream barrel No downstream barrel # Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – 1 π^{\pm} (no π^{0}) All particles No endcap No upstream barrel No downstream barrel # Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – 1 π^0 (no π^{\pm}) All particles No endcap No upstream barrel No downstream barrel ### Neutral current ν_{μ} & $\bar{\nu}_{\mu}$ events – others All particles No endcap No upstream barrel No downstream barrel #### DeltaP_noBRF v number of neutrons- no pions #### DeltaP_noBRF v number of neutrons – 1 charged pion #### DeltaP_noBRF v number of neutrons – 1 neutral pion #### DeltaP_noBRF v number of neutrons – others ### DeltaP_noBRF vs mode – no pions ### DeltaP_noBRF v mode – 1 charged pion ### DeltaP_noBRF v mode – 1 neutral pion ### DeltaP_noBRF v mode – others # Why does the all primary case have a large width for ΔP ? These plots have bin width = 25 MeV #### Could it be due to Fermi Motion?