Current GArSoft Efficiency and Resolution Capabilities

Burke Irwin

Dr. Chris Hilgenberg, Dr. Andrew Furmanski, and Dr. Greg Pawloski August 2, 2021

Purpose

- Provide a comprehensive study of the current efficiency and resolution capabilities of GArSoft for final state protons
- Perform one of the first analysis studies using GArAna
- Working towards stronger efficiency and resolution for low energy protons
- Tuning GArSoft proton momentum reconstruction, and hopefully using this reconstruction on data to tune FSI models in GENIE.

GArAna

- GArAna is a light-weight, portable, general purpose analysis framework that is both usable by young C++ coders and useful to experts.
- C. Hilgenberg built three GArAna trees along with a GArAna specific Backtracker
 - GenTree—GENIE level information
 - G4Tree—Geant-4 level information
 - RecoTree—Reconstruction level information
- Functions in the Backtracker allow for truth matching between GENIE particles, G4 particles, and reconstructed tracks.
- More sophisticated capabilities have been released since the June 4th training such as a function that takes a track ID and returns a sorted list of the particles used to reconstruct the track and the energy they deposited

File Specifics

- File used to generate all following plots was created by Eldwan Brianne and is located at:
 - /pnfs/dune/persistent/users/ebrianne/ProductionSamples/ND-GAr/nd_hall_mpd_only_ECal12sides_42I_SPY_v3_wMuID/Reconstruction/neutrino/
- These plots were created using an 87000 event subset of the above 500k event file. All vertices are inside the TPC.
- File contains 127737 true protons

Efficiency

- Studied two different efficiencies using three different variables:
 - Momentum Efficiency
 - Drift Angle Efficiency
 - Angle from Drift Direction
 - Angle about Drift Direction
- The true proton was only associated with the one track that it donated the largest amount of energy to.

Proton Momentum Reconstruction Efficiency

0.9 0.8 0.7 0.6 0.5 - + 0.4 - 0.3 - 0.2

1.5

Low Momentum Efficiency

 Efficiency plots were used to implement a 300 MeV/c momentum threshold to cut out low momentum protons

2.5

Momentum (GeV/c)

0.1

0.5

Angle about Drift Direction Efficiency

- These two angles were chosen to characterize the efficiency due to the detector's cylindrical symmetry.
- Angle from drift direction:

$$\cos^{-1}(\frac{p_{\chi}}{|\vec{p}|})$$

 Angle about drift direction (chosen due to the cylindrical symmetry):

$$\tan^{-1}(\frac{p_y}{p_z})$$

 Physically, scattering at 0 degrees from the Drift direction is scattering to the left and 180 degrees from the Drift direction is to the right.

Proton Angular Reconstruction Efficiency

Angle from Drift Direction Efficiency

The above plot is areanormalized

- Found bug: True energy of that particle donates to a track is sometimes larger than the true energy of the particle
- Similar shape is expected once bug is corrected

Proton Quaternary Track

Proton Cleanliness

Spectrum for protons >80% responsible for a track

Spectrum for protons <80% responsible for a track

- Cleanliness is defined as the percent of the track's energy that was deposited by the proton
- Despite the issues with the previous slide, it not uncommon for protons to give less than half their energy to a track. However, this energy almost always is the primary energy source for the track.
- Odd structure around 0 cleanliness

Resolution

- Associated track that took the largest fraction of a proton's energy with the true proton.
- Studied different resolutions
 - True p vs Reconstructed p
 - Fractional Difference in p ($p_{true}-p_{reco}/p_{true}$)
 - Absolute Difference in p $(p_{true} p_{reco})$
 - 1 and 2-D Drift Angle Resolutions
- Findings show sub-par resolution for low momentum protons.

Low Momentum Resolution

- The fractional difference plots show many instances of reconstructed momentum being many factors larger than the true momentum.
- Poorest resolution is from low momentum protons perhaps too short to use curvature reliably?

- The difference in momentum resolution plots show a nice grouping around 0. This suggests small differences between the true momentum and the reconstructed momentum.
- Additionally, differences of 50 MeV between reco and true momentum are less important here than in fractional resolution.
- Interesting double peak in the [1 GeV – 3 GeV) range

- The asymmetry in the Angle from Drift efficiency could have had an affect on the same resolution.
- Reassuring that the dot product between the true and reconstructed momentum unit vectors peaks near 1.
- The second peak in the dot product plot is likely due to low momentum protons being reconstructed as travelling in the opposite direction.

Next Steps

- Produce same study for muons, charged pions, and charged kaons
- See how much energy is distributed between each track a proton donates to
- Identify why there is an imbalance in the drift angle efficiency and resolution
- Continue to advance GArAna performance
- Increase the overall momentum efficiency once it plateaus
- Work towards optimizing when to reconstruct low-momentum protons using curvature and when to use distance travelled

University of Minnesota Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.