Metalenses as Light Concentrators for Liquid Argon Detectors Benjamin Lawrence-Sanderson, The University of Texas at Austin; Carlos Escobar, Adam Para, Fermilab

Introduction

Metalenses are flat optical components that can replicate the behavior of conventional lenses or exhibit altogether new functionalities impossible to achieve with only standard lenses (Khorasaninejad and Capasso, 2017). Metalenses, being planar, compact, and mass produced have the potential to be used in light detection for noble element detectors. By placing a metalens in front of the Silicon Photomultiplier (SiPM) such that more light is focused onto the SiPM's photosensitive region, the photon collection efficiency can be increased (Villalpando et al., 2020).

Purpose & Outline

Simulation Stage	Input Parameters	T tc
CaTS/GEANT4	Particle energy, type Detector geometry Rayleigh scattering Wall reflections	rr W W
Motalons Surface	T	
Analysis	Analysis	in
$MTF_1(r, \theta_{proj}, f) \rightarrow \theta'_{proj}$		
SiPM Surface Analysis	SiPM geometry Metalens focal length Metalens-SiPM distance	p e S
VE RE TASE		Si
		e
		fii

Fig. 2: A model metalens-SiPM setup. Scintillation light (red) shines on the 4x4 metalens array (blue) and is focused down onto the nearby SiPM array (green). Note the small size of the SiPMs in relation to the metalenses. Not to scale. Generated with SketchUp.

This project seeks to develop a simulation ool to explore the light distributions on the netalens and SiPM planes. The code is vritten in Python and has the capability of vriting ROOT histogram files using PyROOT. The program interfaces with GEANT4/CaTS order to simulate the photon production light propagation through the LAr Ind Tweaking the different input olume. parameters (left) allows the user to easily evaluate and compare multiple different setups. By toggling different parts of the simulation (e.g., Rayleigh scattering), we can explore how each component changes the inal result.

Fig. 3: Photons that hit a metalens after being reflected by a wall in the LAr volume increased the noise surrounding the direct photons in all angular distributions. Switching from 2.5 MeV electrons to 2.5 MeV α particles does not significantly change the distribution.

Transfer Function Metalens The insight into how this distribution changes in

(MTF) maps θ_{proj} and the radial position r to a new angle θ'_{proj} to simulate the passage of a photon through a metalens. This program provides angular response to many input parameters. For the first time, photons can be propagated from their initial creation in LAr, through a metalens, and onto a SiPM to be analyzed.

I would like to thank my mentors Dr. Carlos Escobar and Dr. Adam Para for their guidance, support, and mentorship throughout this project. would also like to thank Dr. Roxanne Guenette and all the other members of her Neutrino Group at Harvard, such as Augusto Martins and Chris Stanford, who offered valuable advice and support throughout this project. I must also thank Hans-Joachim Wenzel, Soon Yung Jun, and Michelle Stancari who provided help throughout this project. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Results

ar Angle for Different Simulation Input Paramet

Conclusions

Acknowledgements

We observed that reflections from the walls significantly change the incident light distribution on the metalenses. The angle and distance of the event in LAr relative to the metalens region has a heightened significance compared to the bare-SiPM setup. To measure this, we define θ_{proj} to be the "projected polar" angle. It is formed by the projection of the photon's direction vector onto the plane that runs from the metalens center to the photon's impact position. The angle of this vector with respect to the metalens normal vector is θ_{proj} .

References

P11021 (2020).

FERMILAB-POSTER-21-111-ND

Fig. 4: The incident light from six separate events is displayed above. The distance between the detector and the event (R) generally increases or decreases the net photons collected by the detector. Changes in the angle between the detector region and event (ϕ) also change the aggregate photon count, but also has a large effect on the shape of the θ_{proj} distribution.

- Khorasaninejad, M. & Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 358, eaam8100 (2017). Villalpando, A. A. L. et al. Improving the light collection efficiency of silicon
- photomultipliers through the use of metalenses. J. Inst. 15, P11021–
- Chen, W.T., Zhu, A.Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020).
- Wenzel, H., CaTS, (2021), GitHub repository, github.com/hanswenzel/CaTS