Mu2e-II Target Studies: Optimizing Target Geometry and Maximizing Muon Stopping Rate

Background and Project Purposes

The Mu2e experiment will search for the charged lepton flavor violation by observing the neutrino-less conversion of a negative muon into an electron in the Coulomb field of a nucleus. We need muons in order to be used in Mu2e-II (Mu2e upgrade) experiment. Thus, target hardware (full conveyor) modeling is ongoing to estimate its effects on muon stopping rates for implementation in framework.

This target studies is for Mu2e-II (Mu2e upgrade). It is a part of LDRD experiment at Fermilab. It's aimed to optimize target geometry of the conveyor model and maximize the muon stopping rate using the standard beam code and G4beamline. The table of outcomes will contribute to this future critical experiment at Fermilab.

Bent Target Conveyor Sketch from LDRD
Optimizing Target Geometry Procedure
This target study is for Mu2e-II (Mu2e upgrade). In the first step, use the conveyor target model developed by LDRD and have 28 carbon spheres in the interaction region. Then, study how the shift by $-20,-10,10$, and 20 cm of the target (positive direction corresponds to the muon flow direction) affects the stopping rates. In details, for each target position, to align the target spheres along proton trajectories precisely, the following steps were executed:

1) Obtained proton trajectories in a tabular form from simulations.
2) Fitted the trajectories with 2nd and 3rd order polynomials.
3) Used my developed C++ code to calculate coordinates for the centers of the spheres with constant gaps $=0.01 \mathrm{~cm}$ between them.

Entire Stopping Target Setup Plot

Sphere Obtaining Programing Project

- This C++ program is aimed to calculate the center of spheres coordinate. It's capable after the $2^{\text {nd }}$ or $3^{\text {rd }}$ order polynomial equation of the trajectory curve is obtained. The program was designed with flexibility.
- Input Data needed: The polynomial algebraic equation for the 2 dependent variable using the 3rd coordinate as independent variable. The starting point of the trajectory, and the radius of the balls.
- Output of this program: The output will be in a txt file. The 3 coordinate of each of the balls will be listed and separated by space. The coordinates of each balls are in separate lines.

Left - Part of the Sphere Obtaining Coding project Right - Sample of output of the Coding Project

Summary Result and Conclusion

The center of spheres were inputted in G4beamline and the stopping rates were obtained with G4beamline.

Shift, cm	st.mu	d st.mu
-20	$6.30 \mathrm{E}-05$	$3.97 \mathrm{E}-06$
-10	$6.95 \mathrm{E}-05$	$4.17 \mathrm{E}-06$
0	$7.01 \mathrm{E}-05$	$4.20 \mathrm{E}-06$
10	$7.60 \mathrm{E}-05$	$4.36 \mathrm{E}-06$
20	$6.40 \mathrm{E}-05$	$4.00 \mathrm{E}-06$

Muon Stopping Rate and Uncertainty in Different Shifting Direction and Distance
Muon stoppiing rate, muons/proton-on-target

Muon Stopping Rate Result in Chart
From the data, we can know shifting the target upward 10 cm can give slightly better result, but the difference between rates is not greater than the uncertainty of the results. Thus, within the statistical uncertainty, the rates are indistinguishable.
In conclusion, there are no significant advantages in moving the target. The effect of shifting the target 10 cm upstream on the muon stopping rate requires more studies.

Acknowledgment

I'm deeply indebted to this opportunity of assisting Mu2e experiment in Fermilab. I would like to express my deepest appreciation to my mentor, Vitaly Pronskikh, for his patience and guidance throughout the journey. I gratefully acknowledge the effort of all team members from Mu2e experiment.

