
Parts Identifier Database

10/27/2021

Paul Laycock

Reminder of the PID DB
The parts identifier (PID) database is a small reliable database that

stores and delivers the PID numbers
The first four fields need to be very carefully managed across the
consortia, let me call that a ComponentTypeID, or CTID

D/I/L/P 001-999 001-999 0001-
FFFF

- 0001-FFFF - AA-ZZ 001-999 - 00-99 00-99 001-999

Project System
ID

Subsystem
ID

Item
Type ID

Dash Item
Number

Dash Country
of Origin

Responsible
Institution ID

Dash Detector
ID

Final
Destination

Intermediate
Destination

F F F F F F F M M M

Every entry in the hardware DB will need a PID

The PID database and service
The PID database works with the Hardware database
It will provide REST APIs to generate PIDs and automatically

insert them into the Hardware database

Only defined combinations of
Project+SystemID+SubsystemID+ItemTypeID

i.e. CTIDs will be allowed – see next slide on defining these

The coupling between the PID DB and the HWDB was
understood to be limited to the PID (with PID DB is master)

Definitions needed from consortia

We need to collect the valid combinations that define DUNE
Item Types (good progress has been made)

Workflow PID DB is boss (1)

Initial injection of PIDs
Generate a PID (or several) for your

ItemTypeID
These will automatically be inserted into

the HWDB to make them available

HWDB

AUTH

Apache DB
Storage

PID DB

Workflow PID DB is boss (2)

Subsequent update of parts
Interact with the HWDB to insert e.g.

QA/QC data

HWDB

AUTH

Apache DB
Storage

PID DB

Workflow PID DB is boss (3)

Scanning PIDs
Ask the PID DB
Assume we still want authentication

AUTH

Apache DB
Storage

PID DB

Problem – HWDB Component Types
Component Type Creation
Conceptually, a HWDB Component

Type is a PID DB Item Type
We should not have multiple places

where these are defined!

We could have the PID DB inject the
full PID information into HWDB

But HWDB stores more information
about Component Types, and it
should be master of its
fundamental objects

Propose instead to add PID DB
requirements to the HWDB iff
Steve and Vladimir agree!

PID and the Permanent part of the PID

The parts identifier (PID) encodes the information we need to have available,
the idea being to print codes on parts
Mutable information is updated during the lifetime of the part

The permanent, immutable, part of the PID is encoded in the highlighted fields.
Once created, this PPID should never change

D/I/L/P 001-999 001-999 0001-
FFFF

- 0001-FFFF - AA-ZZ 001-999 - 00-99 00-99 001-999

Project System
ID

Subsystem
ID

Item
Type ID

Dash Item
Number

Dash Country
of Origin

Responsible
Institution ID

Dash Detector
ID

Final
Destination

Intermediate
Destination

F F F F F F F M M M

N.B. If we were happy with needing to use some app to retrieve
information from the PPID, we would not need to worry about printed
PIDs going out of date, we would need less room, and have more info!

That may be a big IF !

Proposal
Component Type Creation
The CTID parts of the HWDB Component Type are entered by one or two

privileged users (Jim) and are locked
This ensures they obey the PID requirements managed by Jim

Once this basic information is available, it should be possible to generate
PPIDs for those Component Types using the HWDB, which should then
create the associated Component objects in the HWDB at the same
time
The rest of the PID information needs to be completed by the consortia.
Initial information could be entered when creating Component objects,
efficient for bulk creation of hundreds of objects. PID information evolves
with time so would need to be updated (but not the PPID !)

Additional information for Component Types can and should be added by
the consortia’s privileged users (e.g. Hajime, Marco, Norm…),
Component objects

Backup

PID DB Functions

GenerateID (Project, SystemID, SubsystemID, ItemTypeID)
GenerateIDBulk (…)
ListIDs (…)
GetLastItemID (…)
GetNumRemainingIDs (…)

UpdateID (PID, <info>)

ScanID (QR or Barcode)

