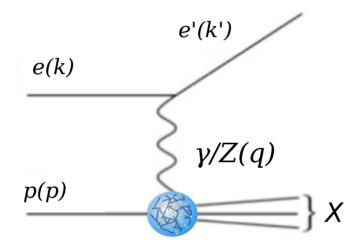
Electroweak physics at the FCC-eh (and LHeC)

D. Britzger, M. Klein, H. Spiesberger for the LHeC & FCC-eh study group Snowmass EF04 meeting 10.09.2021

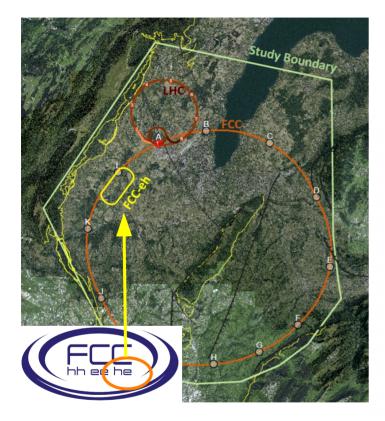
FÜR PHYSIK


MAX-PLANCK-INS

Deep-inelastic electron-proton scattering

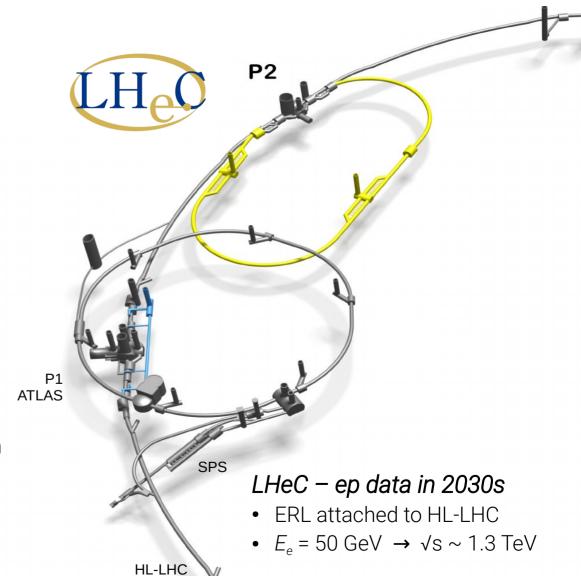
Neutral current scattering $ep \rightarrow e'X$

Charged current scattering $ep \rightarrow \nu_e X$

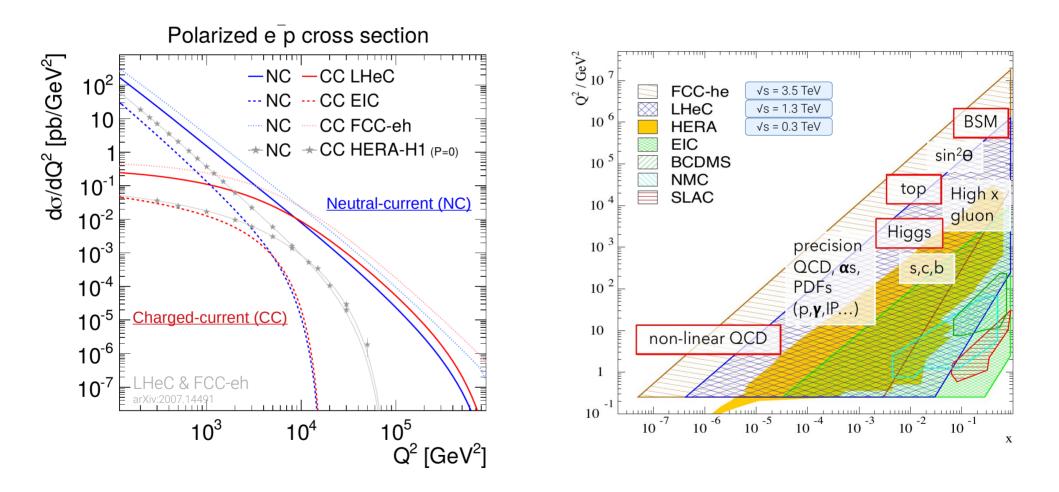


Deep-inelastic electron-proton scattering

mediated in spacelike regime, by γ , γ Z, Z or W-boson exchange

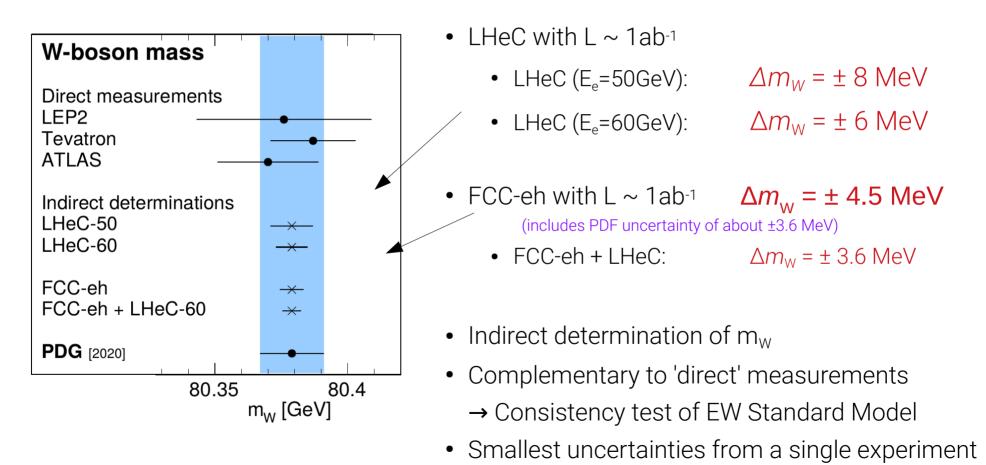

-> Ideal QCD and Electroweak laboratory

Future high-energy electron-proton experiments

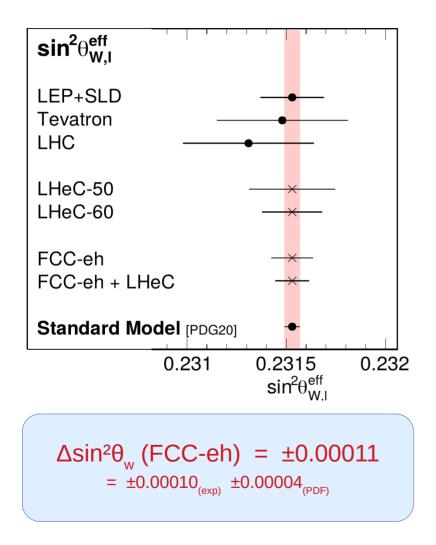


- Dedicated electron-ring attached to FCC-hh
- Energy recovery linac: $E_e = 60 \text{ GeV}$
- √s ~ 3.5 TeV
- More than 1 ab⁻¹ integrated luminosity

EW physics at FCC-eh



Electroweak physics in inclusive DIS



Expectations: m_w + PDF

Determine W-boson mass together with proton-PDFs

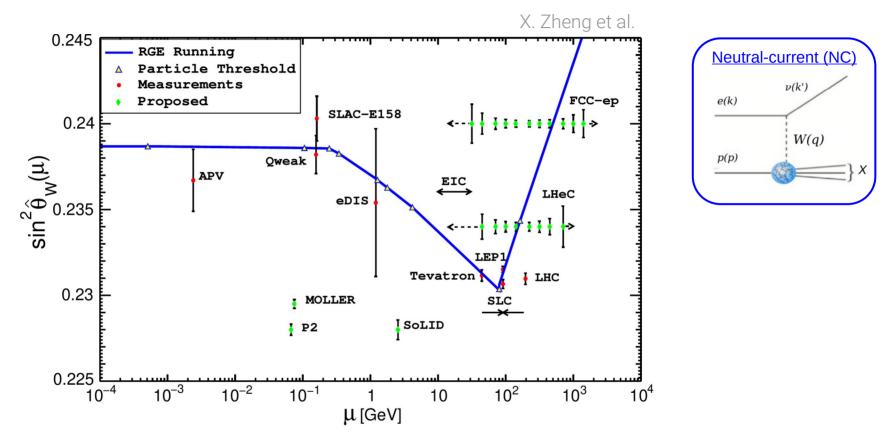
The weak mixing angle

Weak mixing angle

• $sin^2\theta_w$ in neutral-current vector couplings (only)

$$g_V^f = \sqrt{\rho_{\mathrm{NC},f}} \left(I_{\mathrm{L},f}^3 - 2Q_f \,\kappa_f \,\sin^2\theta_W \right)$$

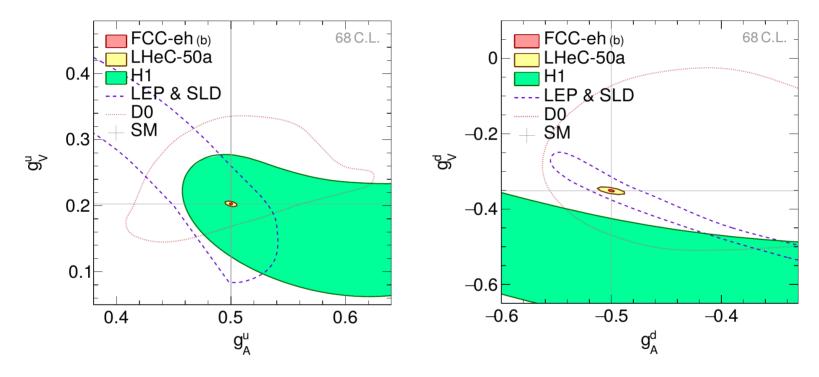
$sin^2\theta_w$ + PDF fit


- Comparison to Z-pole data
- At future DIS facilities:

Most precise single measurement possible

- Note: need theory to map $\sin^2\theta_w$ to effective leptonic weak mixing angle

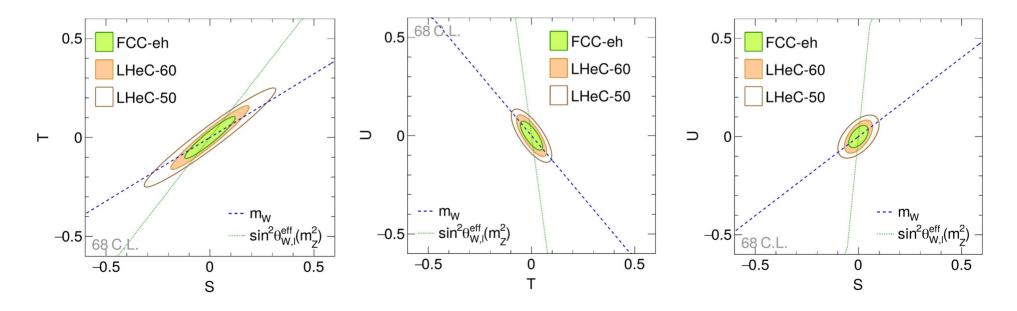
/			
	Δsin²θ _w (LHeC-50)	$= \pm 0.00021$	
	Δsin ² θ _w (LHeC-60)	$= \pm 0.00015$	
	$\Delta sin^2 \theta_w$ (FCC-eh+LHeC)	$= \pm 0.000086$	
	\setminus		


Running of the weak mixing angle

- Simultaneous determination of multiple values of $\sin^2\theta_w$ together with PDFs at different Q²
- Per mille uncertainties in about 20 < Q < 2000 (700) GeV in spacelike regime
- Unique measurement of 'running' at high scales

Light quark NC couplings

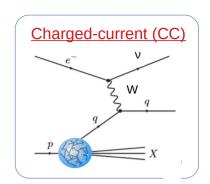
Light quark (u- & d-type quarks) neutral-current couplings to the Z-boson

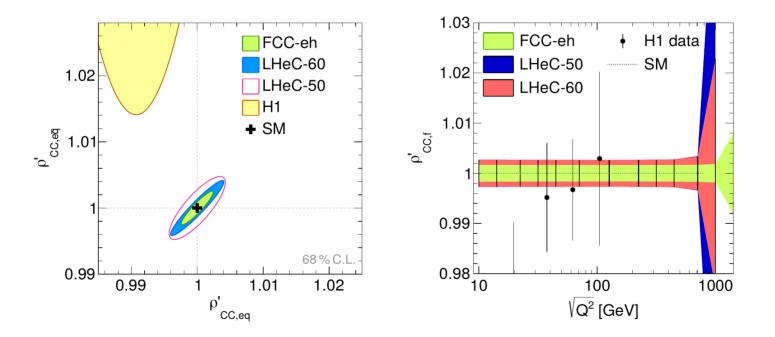


- LHeC already improves by more than an order of magnitude
- FCC-eh with per-mille precision
- *u*-type and *d*-type can be separated no sign ambiguity as in *Z*-pole data due to γZ terms

STU parameters from inclusive DIS

S, T, U parameters are non-SM contributions to Z & W-boson self-energies

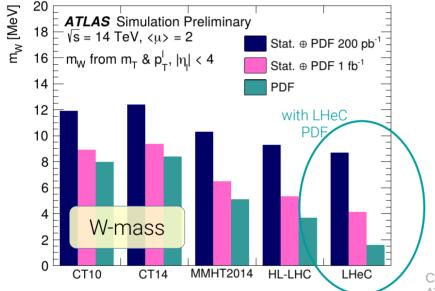

- Studied here: 2-parameter fits incl. PDF fit
- Scheme dependence: Modified on-shell (MOMS)
- With inclusive NC&CC DIS: Possible to disentangle S, T and U
 - → Complementary to Z-pole



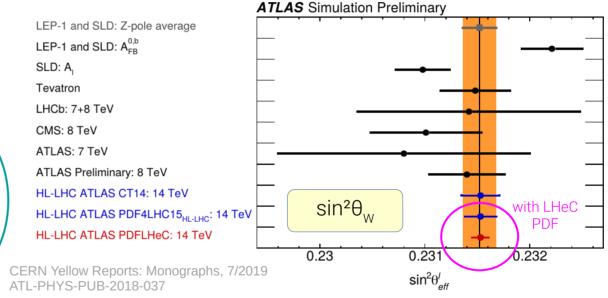
Charged current

Study charged current cross sections in DIS

$$W_2^- = x \left((\rho_{\mathrm{CC},eq} \rho_{\mathrm{CC},eq}')^2 U + (\rho_{\mathrm{CC},e\bar{q}} \rho_{\mathrm{CC},e\bar{q}}')^2 \overline{D} \right)$$
$$xW_3^- = x \left((\rho_{\mathrm{CC},eq} \rho_{\mathrm{CC},eq}')^2 U - (\rho_{\mathrm{CC},e\bar{q}} \rho_{\mathrm{CC},e\bar{q}}')^2 \overline{D} \right)$$



Charged current couplings not well studied experimentally – unique to DIS


The impact of LHeC on HL-LHC (through PDFs)

W-mass measurements in pp

• Major uncertainty from PDFs

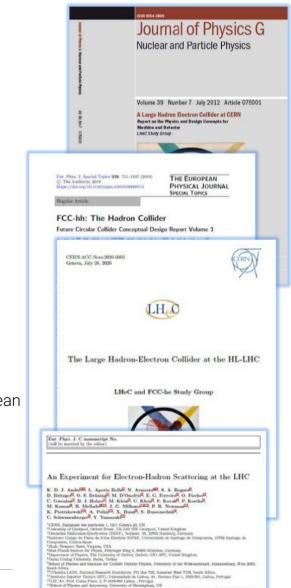
- Effective weak mixing angle in pp
 - Large uncertainty from PDFs

• Reduction of PDF uncertainty only feasible with LHeC PDFs $(\Delta m_W^{PDF} \sim 2MeV)$

- HL-LHC-PDF reduces uncertainty by 10-25%
- → LHeC *ep* data would provide needed factor of 5-10 in PDF improvement to exceed LEP precision

Summary

The LHeC and FCC-eh projects


- 50 GeV electron from ERL on 7TeV or 50 TeV protons synchronous with LHC or FCC-hh collisions
- Very rich & diverse physics programme

Electroweak physics (Eur.Phys.J.C 80 (2020) 831 & CDR-2020 [arXiv:2007.14491])

- Fundamental EW parameters: competitive with other measurements
- Complementary to Z-pole data different aspects of GSW theory are measured
- Several unique measurements possible (Q²-dependence, charged current, light-quarks couplings,...)

Support of HL-LHC and FCC-hh proton-proton programme

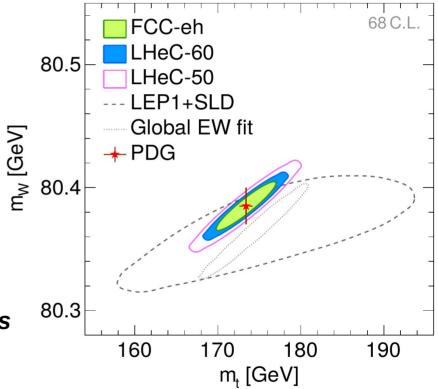
- Complementary measurements (s-channel vs. t-channel, clean low-p_T measurements, clean QCD final-state [H→bb], etc...)
- Supportive measurements (PDFs, parton shower, hadronisation, fragm. functions, etc...)
- Competeing measurements (Higgs, EW, etc...)
- PDFs for phenomenology
- clarification of initial versus final state effects in hadronic collisions (the small system problem)

EW physics at FCC-eh

D. Britzger – Snowmass EF04

Top-quark mass through EW correction

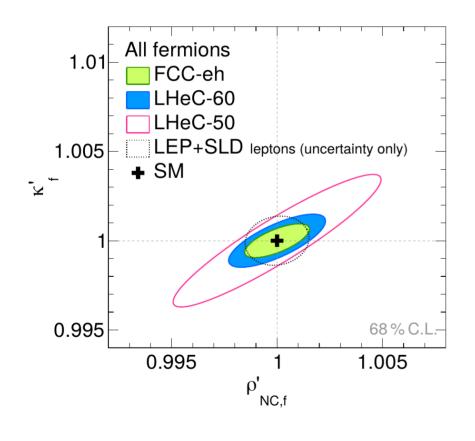
Higher order EW corrections


- Dominant term ρ_t in EW-HO corrections proportional to m_t^2/m_w^2
- Same relation as in Z-pole physics

FCC-eh

- Significantly better than LEP+SLD combination
- Higher sensitivity than 'global EW fit' (GFitter, EPJ C78 (2018) 675, fit w/o direct mt& mtw measurements)

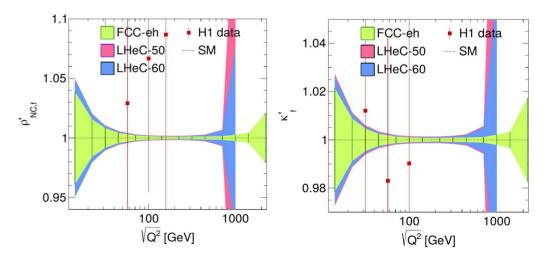
Top-mass determination with external W-mass


 Δm_{\star} (FCC-eh) ~ ±810 MeV (incl. PDF uncert., not incl. Δm_{w})

Higgs mass from m_{H} +PDF fit: Δm_{H} (FCC-eh) ~ $^{+10.5}_{-9.6}$ GeV

Anomalous form factors

Generically parameterise new physics by modified EW-couplings

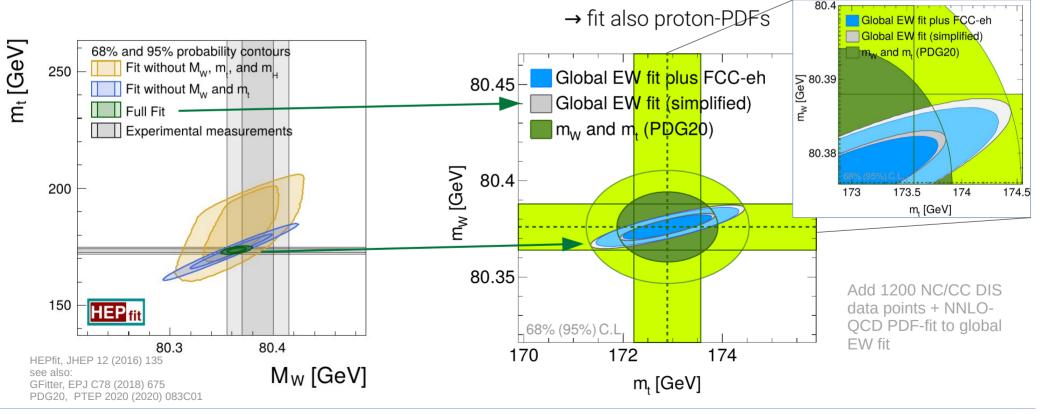


- Introduce anomalous form factors ρ' and κ' In SM: ρ' and κ' = 1

$$g_A^f = \sqrt{\rho'_{\mathrm{NC},f}\rho_{\mathrm{NC},f}} I_{\mathrm{L},f}^3,$$

$$g_V^f = \sqrt{\rho'_{\mathrm{NC},f}\rho_{\mathrm{NC},f}} \left(I_{\mathrm{L},f}^3 - 2Q_f\kappa'_f\kappa_f\sin^2\theta_W\right)$$

• Parameters may be Q² dependent (similar to running weak mixing angle)


(The) global electroweak fit – with FCC-eh

Global electroweak fit

- Many precision observables fitted together
- Fit w/o m_w & m_t compared on slide 16
- Full fit with $m_w \& m_t$, where ρ_t defines correlation

Global electroweak fit with FCC-eh

- simplified setup: drop all observables that do not contribute significantly to $m_w m_t$ result
- Add FCC-eh inclusive DIS data;

EW physics at FCC-eh

Electroweak physics in inclusive DIS

Inclusive DIS (neutral-current)

$$\frac{d^{2}\sigma^{\mathrm{NC}}(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left[Y_{+}\tilde{F}_{2}^{\pm}(x,Q^{2}) \mp Y_{-}x\tilde{F}_{3}^{\pm}(x,Q^{2}) - y^{2}\tilde{F}_{\mathrm{L}}^{\pm}(x,Q^{2}) \right]$$

$$\tilde{F}_{2}^{\pm} = F_{2} - (g_{V}^{e} \pm P_{e}g_{A}^{e})\varkappa_{Z}F_{2}^{\gamma Z} + \left[(g_{V}^{e}g_{V}^{e} + g_{A}^{e}g_{A}^{e}) \pm 2P_{e}g_{V}^{e}g_{A}^{e} \right]\varkappa_{Z}^{2}F_{2}^{Z}$$

$$\left[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z} \right] = x\sum_{q} \left[Q_{q}^{2}, 2Q_{q}g_{V}^{q}, g_{V}^{q}g_{V}^{q} + g_{A}^{q}g_{A}^{q} \right] \{q + \bar{q}\}$$

$$\sin^{2}\theta_{W} = 1 - \frac{m_{W}^{2}}{m_{Z}^{2}}$$

$$\varkappa_{Z}(Q^{2}) = \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \frac{1}{4\sin^{2}\theta_{W}\cos^{2}\theta_{W}}$$

On-shell scheme

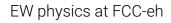
$$g_A^f = \sqrt{\rho_{\text{NC},f}} I_{\text{L},f}^3 ,$$

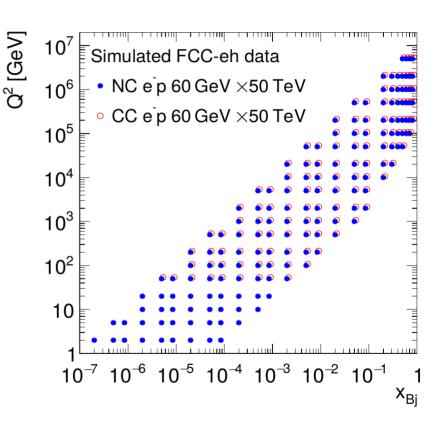
$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \kappa_f \sin^2 \theta_W \right)$$

NC couplings

Independent SM paramters:
$$\alpha$$
, m_Z , m_W + PDFs

EW physics at FCC-eh


Methodology I – simulated FCC-eh data


Simulated NC and CC DIS data

- About 1200 cross section data points do/dQ²dx
- Luminosity of 1 ab-1
- Full set of systematic uncertainties

Source of uncertainty	Size of uncertainty	Uncertainty on cross section	
		$\Delta \sigma_{ m NC}$	$\Delta \sigma_{\rm CC}$
Scattered electron energy scale $\Delta E'_e/E'_e$	0.1~%	0.1-1.7%	_
Scattered electron polar angle	$0.1\mathrm{mrad}$	0.1-0.7%	_
Hadronic energy scale $\Delta E_h/E_h$	0.5%	0.1-4%	1.0-8.6%
Calorimeter noise (only $y < 0.01$)		0.0 - 1.1%	included above
Radiative corrections		0.3%	_
Photoproduction background $(y > 0.5)$	1~%	$0.0~{\rm or}~1.0\%$	_
Uncorrelated uncertainty (efficiency)		0.5%	0.5%
Luminosity uncertainty (normalization)		1.0%	1.0%

- Simulated datasets for
 - NC and CC DIS
 - electron and proton runs
 - different electron beam polarisations
 - low-E_p run

Methodology II – simulated FCC-eh data

Fitting methodology

- QCD (PDF-) fit in NNLO precision using ZM-VFNS from QCDNUM
- → 13 free PDF parameters
- → Uncertainties on EW parameters include PDF uncertainties
- Plus: fit EW parameter of interest

EW calculations

- Calculations are performed in on-mass shell scheme: $(\alpha_{em}, m_z, m_w, \Delta r)$ with $\Delta r = \Delta r(\alpha_{em}, m_w, m_z, m_t, m_H, ...)$
- Dependence on m_t and m_H through loop-corrections (Δr)
- $sin^2\theta_w$ and g_f are calculated quantities and thus no free parameters
- More general, also vector and axial-vector couplings are 'free' parameters