Systematic uncertainties on R_b and R_c measurements at an e⁺e⁻ collider

(IHEP, Chinese Academy of Sciences)

Institute of High Energy Physics Chinese Academy of Sciences

Zhijun Liang

Branching ratio (R^b): motivation • At LEP measurement 0.21594 ±0.00066 Fcc-ee and CEPC aim to improve the precision by a factor 10~20 (0.02%) R^b measurement is sensitive to New physics models (SUSY) \blacktriangleright SUSY predicts corrections to Z \rightarrow bb vertex. ➢ Through gluino and chargino loop ...

Arxiv:1601.07758v2

Branching ratio (R^b): detector requirement

- Two ways to tag the b quarks in Z->qq events
 - Secondary Vertex tag (Average decay length of b meson of 2mm level at Z pole)
 - \triangleright Multi-variant analysis : Impact parameter in R/ ϕ and Z, mass of vertex ...
 - Lepton tag
 - High momentum Electron and muon with pT>1GeV in a jet ...

Vertex distance to IP

Vertex distance significance

SLD, Ann.Rev.Nucl.Part.Sci.46:395–469,1996

Branching ratio (R^b): systematics

Source	$\Delta \epsilon^{ m c}/\epsilon^{ m c}$ (%)	$\Delta \epsilon^{\rm uds} / \epsilon^{\rm uds}$ (%)	Δ
Tracking resolution	1.24	4.0	0.0
Tracking efficiency	0.80	4.0	0.0
Silicon hit matching efficiency	0.82	2.8	0.0
Silicon alignment	0.58	2.1	0.0
Electron identification efficiency	1.11	0.5	0.0
Muon identification efficiency	0.64	0.2	0.0
c quark fragmentation	2.26	-	0.0
c hadron production fractions	3.66	-	0.0
c hadron lifetimes	0.55	-	0.0
c charged decay multiplicity	1.09	-	0.0
c neutral decay multiplicity	2.39	-	0.0
Branching fraction $B(D \to K^0)$	1.20	-	0.0
c semileptonic branching fraction	2.44	-	0.0
c semileptonic decay modelling	2.34	-	0.0
Gluon splitting to $c\overline{c}$	0.34	6.3	0.0
Gluon splitting to bb	0.50	9.3	0.0
K ⁰ and hyperon production	-	0.3	0.0
Monte Carlo statistics (c, uds)	0.66	2.5	0.0
Subtotal $\Delta \epsilon^{\rm c}$ and $\Delta \epsilon^{\rm uds}$	6.65	13.3	0.0
Electron identification background			0.0
Muon identification background			0.0
Efficiency correlation $\Delta C^{\rm b}$			0.0
Event selection bias			0.0
Total			0.0

OPAL collaboration, Eur.Phys.J.C8:217-239,1999

Tracker resolution and efficiency(~0.1%)

Lepton identification (~0.1%)

Charm modeling (~0.4%)

Gluon splitting (~0.1%)

Background (~0.2%)

b-tagging corrections (~0.3%)

R^b: b tagging hemisphere correlations

- Hemisphere is taken to be tagged
- if it is tagged by either one or both of the secondary vertex and lepton tags. Major systematics: hemisphere correlations
 - The tagging efficiency correlation between the two hemispheres in one event: Angular effects : due to inefficient regions of detector QCD effects (g->bb)
 - Vertex effects : due to vertex fitting

Single (N_t) and double tagged events

 $N_{\rm t} = 2N_{\rm had} \{\epsilon^{\rm b} R_{\rm b} + \epsilon^{\rm c} R_{\rm c} + \epsilon$ $N_{\rm tt} = N_{\rm had} \{ C^{\rm b} (\epsilon^{\rm b})^2 R_{\rm b} + C^{\rm c} (\epsilon^{\rm c})^2 R_{\rm b} \}$

$$C_{b} = \frac{\varepsilon_{2jet-tagged}}{(\varepsilon_{1jet-tagged})^{2}}$$

$$\varepsilon^{\rm uds} \ (1 - R_{\rm b} - R_{\rm c})\},$$

$$(c)^2 R_{\rm c} + C^{\rm uds} (\epsilon^{\rm uds})^2 (1 - R_{\rm b} - R_{\rm c}) \},$$

Branching ratio (R^b): theory systematics • QCD related systematics • High order QCD corrections gives impact to hemisphere correlations Impact to Backward-forward asymmetry

Error source	$C_{ m QCD}^{ m quark}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)	
	$b\bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_{\rm Z}^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

R^b: b tagging hemisphere correlations •hemisphere correlations depends on b tagging efficiency • with 95% purity working points efficiency> 70% This systematics will not be dominated

OPAL collaboration, Eur.Phys.J.C8:217-239,1999

$$C_b = \frac{\varepsilon_{2jet-tag}}{(\varepsilon_{1jet-tag})}$$

CEPC b tagging ROC curve

R^b: tracker systematics • Alignment systematics: \blacktriangleright LEP study : 20µm mis-alignment \rightarrow 0.04% systematics \rightarrow FCC/CEPC aim for 2um mis-alignment (at least 5µm) \rightarrow <0.005% syst. FCC-ee CLD • Hit Efficiency : σ(Δd₀) [μm] Single µ 10³ p = 1 GeV• LEP study 1% syst. \rightarrow 0.007% syst. In R^b p = 10 GeV= 100 GeV p = 1 GeV, matBudget VTX + 50%• aim for less than 0.5% hit efficiency syst. p = 10 GeV, matBudget VTX + 50% p = 100 GeV, matBudget VTX + 50% 10² 0 Impact parameter resolutions 0 Should optimize for low pT 10 • Aim for 20µm for low pT Lepton efficiency • LEP: 3% syst. \rightarrow 0.04% systematics in R^b 20 40 60 80 θ [deg] Should aim for 0.5% syst.

R^b: charm modelling and lepton ID • Charm modelling : depends on input from flavor experiments (BELLEII...) • C hadron fractions (factions of D⁺, D⁰, D⁺, \rightarrow 0.2% syst. In R^b • LEP: Tagging efficiency for D+ is three times higher than D0 • Need more study to check D meson tagging efficiency in Fcc-ee/CEPC

$\epsilon^{\rm c}/\epsilon^{\rm c}$ (%)	$\Delta \epsilon^{\rm uds} / \epsilon^{\rm uds}$ (%)	$\Delta R_{ m b}$
2.26	-	0.00028
3.66	-	0.00046
0.55	-	0.00007
1.09	-	0.00014
2.39	-	0.00030
1.20	-	0.00015
2.44		0.00031
2.34		0.00029

R^b: gluon splitting • Gluon splitting systematics is estimated by comparing data and MC simulation

-0.4

DELPHI Z->4b analysis Gluon splitting measurements

Summary

- $> R_{\rm h}/R_{\rm c}$ measurements are well motivated > Need more dedicated study
- \triangleright use R_h/R_c measurements as benchmark for detector optimization
- > Need external input
- Charm modelling systematics (input from BELLEII ...)
- > Higher order QCD calculation
- Gluon splitting modelling

11