Update on timing and double layer criteria in ILCRoot VXD and Tracker. A hit rates.

> Nikolai Terentiev (Carnegie Mellon U./Fermilab) Muon Collider Physics and Detectors Meeting Dec. 7, 2011 Fermilab

Introduction

- Timing for MARS background particles and ILCRoot hits (neutron contribution from previous BX)
- **Timing + Double layer criteria** (ladder overlapping hits excluded)
- Hit rates estimation (and comparison with CMS)
- Conclusions/suggestions

- Working with MARS background simulation results for (750 + 750) GeV $\mu^+ \mu^-$ beams with 2*10¹² muons/bunch each
 - http://www-ap.fnal.gov/~strigano/mumu/mixture/
 - Background yields/bunch on 10⁰ nozzle surface and MARS thresholds

	γ	n	e +-	р	π+-	μ+-
Yield	1.77e+08	0.40e+08	1.03e+06	3.13e+04	1.54e+04	0.80e+04
Ethr, MeV	0.2	0.1	0.2	1.0	1.0	1.0

- All MARS statistics (full bunch crossing, weights included) was used as input for ILCRoot simulation of the Si vertex and tracker hits.
 - Run ILCRoot_2.9.1 release simulation with GEANT4 (4.9.4.p01)
 - ILCRoot output files with hits were analyzed in standing alone code

Introduction

Hit definition

- a snapshot of the physical interaction of a particle in the sensitive region of a detector (GEANT4 User Guide)
- provided for each step (particle track propagation is simulated in steps) within a sensitive volume
- includes the position and the time of the step, the momentum and energy of the track, the energy deposition of the step, etc.

For each hit ILCRoot stores in bits the status of the track at the time of creating this hit. Some of them are:

- Bit 1 (1) track is inside the sensitive volume
- Bit 3 (4) track is exiting sensitive volume
- Bit 6 (32) track stopped
- Bit 7 (64) track is alive

Observed status of the tracks:

- 65=64+1 alive and inside (most of the hits)
- 33=32+1 stopped inside
- 68=64+4 alive and exiting
- For analysis of hits for timing, double layer and hit rate purpose use hits with track status != 65 (tracks exiting or stopped)
 - hits with track status =65
 (hits inside) are used by
 ILCRoot to sum the energy

deposition in the steps along the track and digitize the signal from this track

- 89.3M hits (all hits from all MARS background particles) reduced to 13.2M hits
- 87.2M hits (all hits from MARS neutrons+photons) reduced to 12.6M hits
- one (almost) such hit with track status != 65 represents one track in given sensitive volume

Timing for MARS background particles and ILCRoot hits

- MARS background is within ~500 ns w.r.t. a bunch crossing (BX)
- ILCRoot hits for Si vertex and tracker in the same interval except hits from neutrons

• Timing for MARS background particles and ILCRoot hits (cont'd)

- The neutron hits tail up to 20 ms (neutron "gas" in detector due to large elastic scattering?)
- Checking contribution of neutron hits from previous BX. Assume 10 μs between BXs and constant beam intensity.
 - Look back as far as 10³ BXs using hits TOF distribution for one BX
 - Number of hits in given BX 10 μs interval is up by ~50% for hits from neutrons but only ~6% for hits from all background particles

 Negligible contribution in interval of 0-150 ns (~4% for neutrons, ~0% for all particles), no impact on timing in this interval

Reminding

- A stacked layer design to reduce random neutral background occupancy based on inter-layer correlations
- Use ILCRoot Si Tracker and Vertex hits and geometry to illustrate the method, see details and references in previous talk, <u>https://indico.fnal.gov/conferenceDisplay.py?confld=4823</u>
- Update
 - Corrected formulae to estimate the number of fake signals
 - Hits from overlapping regions of ladders are excluded
- A new version of ILCRoot was released on Nov. 29 by Vito Di Benedetto
 - New ROOT, GEANT4 and VMC packages
 - Implementation of double layer geometry in the Si Vertex and Tracker detectors with runtime controlled parameters
 - Now ILCRoot is capable of simulating a realistic double layer geometry with ~mm interlayer distance - will try it ASAP for current MARS neutral background data (not the subject of this talk)

춖

Timing + double layer criteria update

Corrected formula to estimate the number of fake signals

- Assume flat uncorrelated random hits distributions in both layers
- N total number of all pixels per layer,
 n₁ number of hits in layer 1,
 n₂ number of hits in layer 2
- Then using binomial distribution get

```
N_{f} – number of pairs of pixels with hits in both layers (fake signals)
```

 $N_f = N * [1 - (1-1/N)^{n1}] * [1 - (1-1/N)^{n2}]$

 N_1 – number of pixels with hits in layer 1

 $N_1 = N * [1 - (1 - 1/N)^{n1}]$

N2 – number of pixels with hits in layer 2

 $N_2 = N * [1 - (1-1/N)^{n2}]$

Fraction of pixels with fake signal

 $N_f/N \sim (n_1/N) * (n_2/N)$ (if n1, n2 << N)

Rejection **R** of pixels with hits in layers 1 and 2

 $\mathbf{R}_{1} = \mathbf{N}_{1}/\mathbf{N}_{f} \sim \mathbf{1}/(\mathbf{n}_{2}/\mathbf{N}) \qquad (\text{if } n2 << N) \\ \mathbf{R}_{2} = \mathbf{N}_{2}/\mathbf{N}_{f} \sim \mathbf{1}/(\mathbf{n}_{1}/\mathbf{N}) \qquad (\text{if } n1 << N)$

Timing + double layer criteria update

Hits from overlapping regions of ladders are excluded

N. Terentiev (CMU/Fermilab) Muon Collider Physics and Detectors Meeting, Dec.7, 2011

 Number of hits and active 500 micron "pixels" vs. timing gate width before and after double layer criteria (for MARS background neutrons + photons), L1 – L2 VXD Barrel (layers 1-2)

Timing gate	None	25 ns	10 ns	3 ns
# of hits in L1	90036	84551	19148	301
# of hits in L2	86900	81375	18819	354
# of pixels in L1	Np1=64556	61476	16887	281
# of pixels in L2	Np2=62418	59311	16402	330
Timing rej. of pixels in L1	Np1/64556=1	Np1/61476=1.05	Np1/16887=3.8	Np1/281=230
Timing rej. of pixels in L2	Np2/62418=1	Np2/59311=1.05	Np2/16402=3.8	Np2/330=189
Nf, fake signals observ.	26196	23632	1825	2
Nf, fake signals predict.	29414	26720	2073	1
Predicted/Observed	1.12	1.13	1.14	0.5
Fake occupancy, Nf/N*	17%	15%	1.2%	0.001%
Comb. rej. Np1/Nf in L1	2.5	2.7	36	~32,000
Comb. rej. Np2/Nf in L2	2.4	2.6	34	~31,000

* N = 153840 – number of 500x500 μ pixels per outer layer L2

 Number of hits and active 500 micron "pixels" vs. timing gate width before and after double layer criteria (for MARS background neutrons + photons), L4 – L5 Tracker Barrel (layers 17-18)

Timing gate	None	25 ns	10 ns	3 ns
# of hits in L4	1.55M	1.09M	0.224M	4504
# of hits in L5	1.51M	0.97M	0.199M	3923
# of pixels in L4	Np1=1.49M	1.04M	0.216M	4355
# of pixels in L5	Np2=1.45M	0.93M	0.191M	3753
Timing rej. of pixels in L4	Np1/1.49M=1	Np1/1.04M=1.4	Np1/0.216M=6.9	Np1/4355=342
Timing rej. of pixels in L5	Np2/1.45M=1	Np2/0.93M=1.6	Np2/0.191M=7.6	Np2/3753=386
Nf, fake signals observ.	29713	13733	522	0
Nf, fake signals predict.	30938	14075	601	0
Predicted/Observed	1.04	1.02	1.15	
Fake occupancy, Nf/N*	0.04%	0.02%	~0.001%	0%
Comb. rej. Np1/Nf in L4	50	109	2860	>1.49M
Comb. rej. Np2/Nf in L5	49	105	2780	>1.45M

* N = 74.1M – number of 500x500 μ pixels per outer layer L5

Timing+double layer criteria conclusion

- Combination of timing and double layer criteria to reduce muon collider beam neutral background was studied using hits
 - MARS full bunch crossing neutral background statistics as an input (~177M photons, ~40M neutrons)
 - ILCRoot Si vertex and tracker barrel detectors with 500x500 micron "pixel" segmentation and 3.5T magnetic field as an example, large distance between layers
 - The double layer approach can potentially provide large reduction of the number of pixels with neutral background hits:
 - at current ILCRoot geometry and MARS photon+neutron background after 10[°] shielding cone the 10 ns timing cut and double layer correlation gives:
 - rejection factor of ~30-40 and remaining "pixel" occupancy of 1-2% in first two layers of the vertex barrel detector
 - rejection factor of ~2800 in outer two layers of the tracker barrel detector
 - in realistic geometry (interlayer distance ~ mm) will be limited by fraction of secondary tracks reaching the second layer (function of magnetic field, layer orientation in magnetic field, track momentum distribution and space between layers) – subject of study in latest ILCRoot release

For a rough hit rate estimation

- no timing and double layer cuts
- constant muon beams intensity
- contribution of neutrons from previous bunch crossings included (matters for neutron hits, small for all hits)
- barrel layers are approximated by cylinders
- number of pixels is estimated as S_{layer}/S_{pixel}
- no correction for Z and Phi overlapping of ladders in layers
- ignore signals induced in adjacent pixels

• A hit rate estimation is important

- electric power
- hit dissipation

• Number of hits per layer

• Hit R vs. Z for ILCRoot tracker detector layers

– TB – Tracker Barrel, TE – Tracker Endcap, FT – Forward Tracker

• Hit R vs. Z for ILCRoot vertex detector (VXD) layers

- VXDB – VXD Barrel, VXDE – VXD Endcap

- Number of hits per pixel vs. layer
 - 3.5e+10 pixels in 38 layers of ILCRoot VXD and Tracker (calculated as $S_{layer}\!/S_{pixel}$ and therefore overestimated), 20 and 50 micron pixels
 - Total area S ~ 75 m²

• Hit rate average density per layer

- As N * (number of hits per layer) / (area of layer), N=10⁵ for 10 μ s bunch crossing

Hit rate

Hit rate average density vs. radius (ILCRoot VXD and Tracker Barrels)

CMS data

- at the LHC designed luminosity of 10³⁴ cm⁻² s⁻¹ and 7+7 TeV ~ 1000 particles from more than 20 overlapping pp interactions are traversing the CMS tracker for each 25 ns bunch crossing ("The CERN Large Hadron Collider: Accelerator and Experiments", vol. 2)
- disclaimer: assume the similar "hit" definition in CMS simulation (?) data, e.g. one hit per track in given layer (however, this gives ~2.5 times less rate at R=4 cm and L~40 cm)

• Hit rate average density vs. radius (cont'd), kHz/mm²

R, cm	3.3	4.0	5.1	7.9	10.7	13.4	20.7	22.0	46.2	71.7	97.3	115	123
ILCRoot	1010		281	188	152	134	153		44	21	12		8.2
CMS		1000						60				3	

• ILCRoot (VXD+Tracker) and CMS inner Si tracker parameters

	ILCRoot	CMS
Total number of channels	~35,000M pixels	66M pixels, 9.3M strips
S, m ²	75	200
Si sensitive thickness, μ	100	300-500
Pixel size, μ	20, 50	100x150 for pixels 80-180 for strips
Radiation length (X_0) at $\eta = 0$? (to be estimated)	0.4
Electric power, kW		60

 Hit rate density vs. Z (barrel) and R (endcaps) for MARS background in VXD

- Large in VXD barrel layer 1 due to e-e+ contribution (3.5T magnetic field)
- Irregularities are caused by overlapping of ladders in layers
- 0.5 cm wide bin in Z, R, averaged over Phi

- Timing almost no MARS neutron hit contribution from previous BXs to all hits in an interval of 0 - 150 ns
- Timing + Double layer criteria were illustrated in current ILCRoot geometry with ladder overlapping excluded
 - have a good potential of neutral background rejection
 - new ILCRoot release provides more realistic geometry with a few mm distance between sublayers, plan is to try it ASAP
- A hit rate average density estimation for MARS muon beam background in ILCRoot vertex and tracker detector barrels
 - ~1 MHz/mm² in the 1-st VXD layer at R = 3.3 cm (~the same for IP tracks in CMS tracker at R = 4 cm)
 - ~150 kHz/mm² and ~10 kHz/mm² at R~22 and 115 cm correspondingly (2-3 times higher than in CMS for IP tracks at the same radii)
 - main contribution comes from photons (and e+e- for the 1-st VXD layer)
 - hits from neutrons have about the same rate average density of $3 4 \text{ kHz/mm}^2$ for all barrel layers (R = 3 120 cm)
 - observed MARS background signal rate will be higher due to charge induced in adjacent pixels

Simulation + analysis

- test the latest ILCRoot release with double layer VXD and Tracker geometry
- run ILCRoot simulation for current MARS data and IP muons at different interlayer distances and magnetic fields (parameters to be determined, scaling factor for magnetic field?)
- run ILCRoot simulation for coming MARS new data and get results on the hit level (timing and double layer criteria, rates)

We need to continue with ILCRoot development

- to include timing into SDigits and Digits and implement double layer criteria?
- realistic signal in front-end (collection and resolution time, induced signals etc) and corresponding background rejection after timing and double layer cuts on the SDigits/Digits level – expect less optimistic results than on the hit level
- manpower ?