EF02 Highlights (BSM Higgs)

An Early Career Perspective

Samuel Homiller

Harvard University

In coordination with the EF02 Conveners: Patrick Meade & Isobel Ojalvo

Snowmass Day, September 24, 2021

The Higgs as a Portal to New Physics

Inextricably related with EF011

Two (complementary) aspects:

- Learning about BSM physics from measuring the SM Higgs couplings
- Searching for new signals with additional Higgs bosons / new scalars

Important to consider these aspects together!

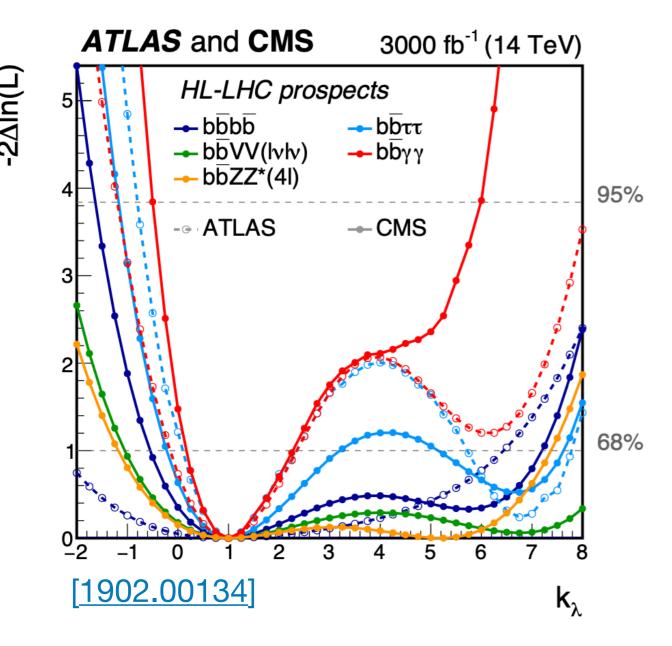
What don't we know about the SM Higgs?

Lots of room for more precision in all the Higgs couplings, but two gaping holes:

$$-\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Higgs potential (self-coupling)

Extended scalar sectors EW phase transition Baryogenesis Hierarchy Problem


$$-\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 \qquad \lambda_{ij}^u Q_i H \bar{u}_j - \lambda_{ij}^d Q_i H^c \bar{d}_j$$

Light flavor Yukawas

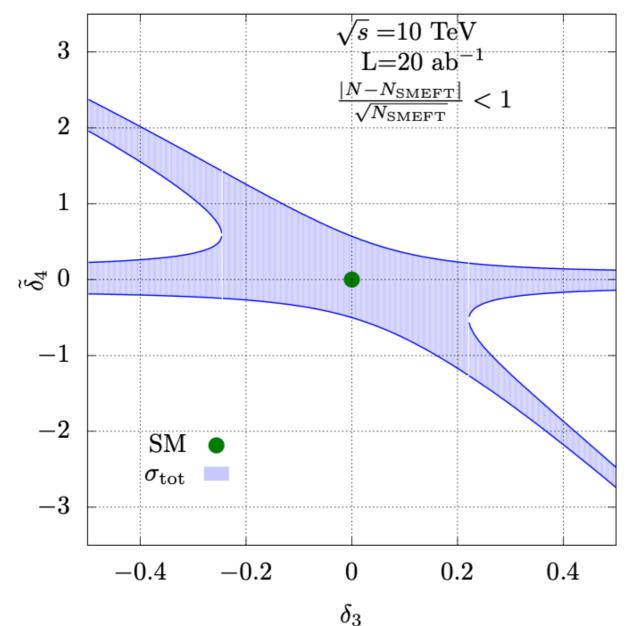
Flavor Puzzle Strong CP Problem Baryogenesis Extended scalar sectors

Di-Higgs Production — the Self-Coupling

HL-LHC prospects on λ_{hhh} :

What is our BSM theory target?

- Can we exclude models with first-order EW phase transitions?
- Unitarity arguments connect deviations to scale of new physics (see e.g., <u>Spencer Chang's EF02 talk</u>)
- Large deviations typically involve models with *new scalars* (see e.g., <u>Sven Heinemeyer's EF02 talk</u>)


(Note: *huge* improvement already compared to Snowmass 2013 projections!)

Di-Higgs Production — the Self-Coupling

Future colliders needed!

Possibilities at a High-Energy Muon Collider?

(see e.g., Mauro Chiesa's EF02 talk)

[1910.00012]

		_	
collider	single- <i>H</i>	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
ILC_{250}	49%	_	49%
ILC_{500}	38%	27%	22%
ILC_{1000}	36%	10%	10%
$CLIC_{380}$	50%	_	50%
CLIC_{1500}	49%	36%	29%
$CLIC_{3000}$	49%	9%	9%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC	-	15%	15%
FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

Di-Higgs Production — Experimental Improvements?

Still lots of room for improvement in boosted hadronic channels!

Branching fractions for HH decays:

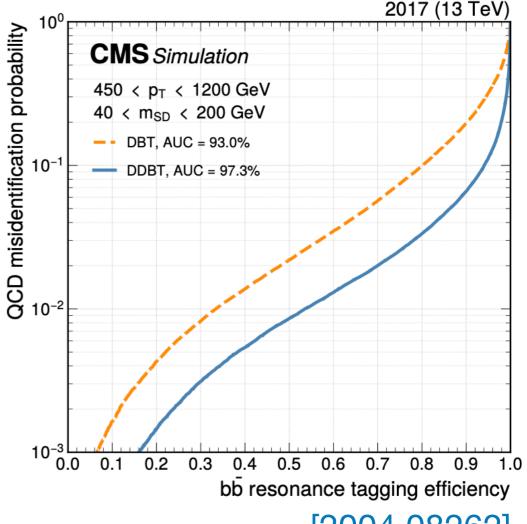
▶ bbyy : 0.26%

bbbb : 33.9%. 130× more signal than bbγγ

bbWW : 24.9% 98× more signal than bbγγ

bbZZ : 3.0% 12× more signal than bbγγ

VVVV : 5.8% 22× more signal than bbγγ

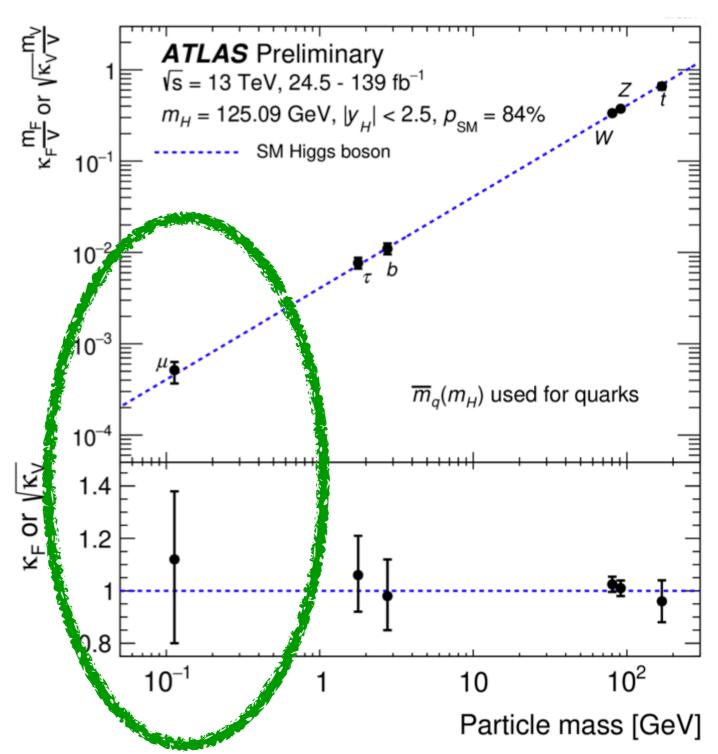

▶ After requiring both Higgs with p_T > 400 GeV

bbbb : 5.2× signal yield of bbγγ

bbww : 4.3× signal yield of bbγγ

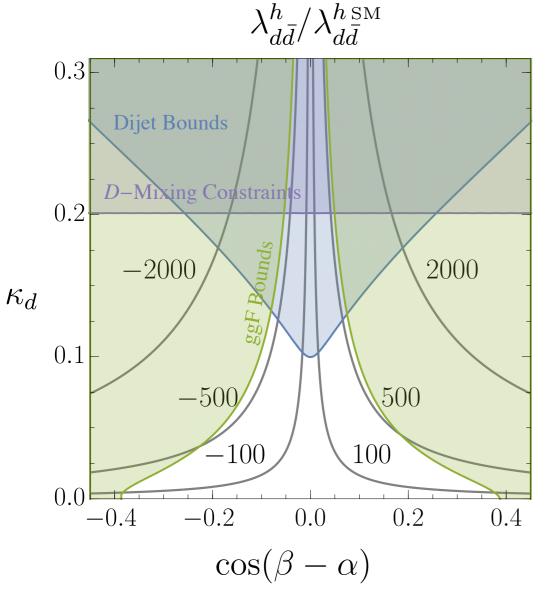
VVVV : 0.9× signal yield of bbγγ

See Javier Duarte's Talk from joint <u>EF01/EF02 discussion</u> last May + <u>EF02 talk last Fall</u> New Higgs Tagging Approaches for boosted, large radius Higgs jets

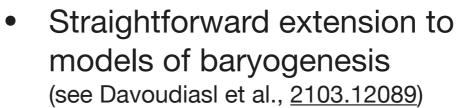

[2004.08262]

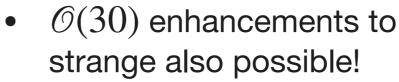
Higgs and Flavor

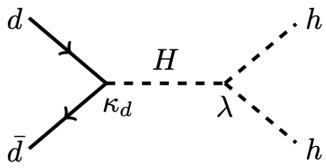
Higgs coupling-mass relationship well fit for the third generation

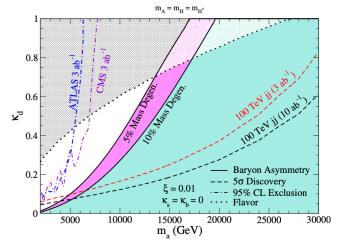

First and second generation quark Yukawas almost completely unconstrained!

- What kind of theories predict large (observable?) enhancements?
- What about bounds on flavorviolating decays?
- How feasible are measurements of light flavor in the future?

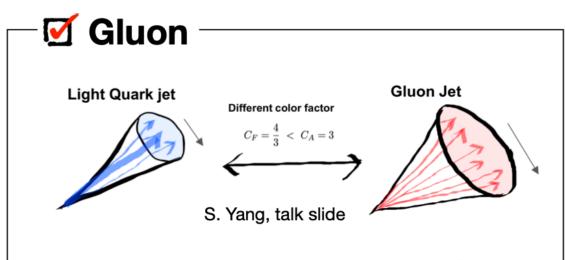



Higgs and Flavor — Theory Targets


New theory ideas: large enhancements of the Higgs Yukawas possible in models with *flavor alignment* (D. Egaña, **SH**, P. Meade, 1908.11376, 2101.04119)



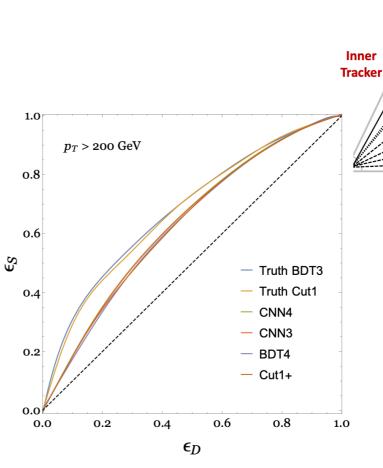
 Lead to interesting signatures from new states



See also <u>D. Tuckler's EF02 talk</u> for ideas leading to flavor-violating Higgs decays

Higgs and Flavor — Tagging Prospects

Is is possible to tag all different flavor jets?


More constituents with more uniform energy fragmentation and wider.

☑ Up-type vs Down-type

 p_T -weighted jet charge

$$Q_{\kappa}^{i} = \frac{1}{(p_{T}^{jet})^{\kappa}} \sum_{j \in jet} Q_{j} (p_{T}^{j})^{\kappa}$$

What about strange tagging?

(Yuichiro Nakai, <u>EF02 Meeting</u> + [2003.09517])

See also Valentina Cairo's Talk in EF01 for prospects at ILC

150 cm

 $K_S \rightarrow 2\pi^0 \rightarrow 4\gamma$

ECAL

130 cm

Summary

Lots of other interesting studies and results that I don't have time to talk about!

A few takeaways:

- We still need to measure the self-coupling and light flavor to "complete" the SM
 - New ideas from theory on large Yukawas, di-Higgs production, and flavor-violating decays
 - Exciting improvements in prospects on light- and heavy-flavor tagging
- Ultimately need future colliders lots of interesting options, each with strengths/weaknesses!
 - What are the ideas from BSM physics motivating our targets for Higgs precision?