

Snowmass Energy and Accelerator Frontiers Activities

Dmitri Denisov and Meenakshi Narain

September 24, 2021

Energy Frontier

- Like the rest of the Snowmass process limited activities between January 2021 and summer 2021
- Restarted strongly with Energy Frontier Workshop August 30 to September 3
 - <u>https://indico.fnal.gov/event/49756/</u>
- Week-long set of meetings and discussions about the Energy Frontier Snowmass progress, developments and future
 - Including extensive interactions between Energy Frontier and Accelerator Frontier

Recent Energy Frontier Workshop

EST time	Mon	Tue	Wed	Thur	Fri
10 -11 am	Plenary (Organisaion&Plans, EF Highlights, MC production)	Plenary (Theory needs and Progress in Accelerators)	Parallels C (a - EF01+EF02, b - EF05+EF06)	Parallels F (a - EF01+EF03+EF04, b - EF05 and EF06)	Plenary (TG Highlights)
11 -12 pm	Parallels (Global EFT Fits)	Plenary (Emerging Future Collider Projects and Progress in Instrumentation)	Parallels D (a - EF01+EF02, b - EF08+EF09)	Parallel G (a - EF07, b - EF01+EF03+EF04)	Plenary (TG Highlights)
12 -12:30 pm 12:30 - 1:00pm		Break			
1:00 - 1:30 pm	Break				
1:30 - 2:30 pm	Plenary (Physics Anomalies and Progress in Instrumentation)	Parallels B (a - Session about dark matter summary plots, b - Session with CompF)	Parallels E (a - EF03, b- EF08+F09)	Parallels H (a - EF03+EF06, b - EF10)	Plenary (TG Highlights)
2:30 - 3 pm	Break	Break			
3 - 4:30 pm	Unstructured Discussions (Discussion with CEF (government outreach and funding)	Unstructured Discussions (Discussion with AF - Muon Collider and new ideas)	Unstructured Discussions (Discussion with AF - e+/e- and hadron colliders, HL-LHC)	Unstructured Discussions (Discussion with AF: advanced acceleration concepts and the collider options)	Unstructured Discussions (Report preparation - result presentation, e.g. plots, tables etc.)

Very close cooperation with Accelerator Frontier

Energy Frontier Groups

Topical Group	Co-Conveners
EF01: EW Physics: Higgs Boson properties and couplings	Sally Dawson (BNL), Andrey Korytov (U Florida), Caterina Vernieri (SLAC)
EF02: EW Physics: Higgs Boson as a portal to new physics	Patrick Meade (Stony Brook), Isobel Ojalvo (Princeton)
EF03: EW Physics: Heavy flavor and top quark physics	Reinhard Schwienhorst (MSU), Doreen Wackeroth (Buffalo)
EF04: EW Physics: EW Precision Physics and constraining new physics	Alberto Belloni (Maryland), Ayres Freitas (Pittsburgh), Junping Tian (Tokyo)
EF05: QCD and strong interactions: Precision QCD	Michael Begel (BNL), Stefan Hoeche (FNAL), Michael Schmitt (Northwestern)
EF06: QCD and strong interactions: Hadronic structure and forward QCD	Huey-Wen Lin (MSU), Pavel Nadolsky (SMU), Christophe Royon (Kansas)
EF07: QCD and strong interactions: Heavy lons	Yen-Jie Lee (MIT), Swagato Mukherjee (BNL)
EF08: BSM: Model specific explorations	Jim Hirschauer (FNAL), Elliot Lipeles (UPenn), Nausheen Shah (Wayne State)
EF09: BSM: More general explorations	Tulika Bose (U Wisconsin), Zhen Liu (Maryland), Simone Pagan-Griso (LBL)
EF10: BSM: Dark Matter at colliders	Caterina Doglioni (Lund), LianTao Wang (Chicago)

Energy Frontier

- Address main questions of particle physics and science in general
 - In depth understanding of the Standard Model
 - And its limits
 - Study properties of the Higgs boson
 - Understand matter-antimatter asymmetry of the Universe
 - What is the dark matter?
 - How the world behaves at the smallest and largest distances we can study?
 - What new particles and interactions exists at even higher collision energies?

All the above relies heavily on the new high energy colliders!

Many Exciting Options...

Challenges

- We are not building energy frontier colliders for ~30 years
- Two main challenges
 - New colliders are not cheap
 - There is no single "best" option for the future collider

Recent Developments

- Renewed interest in a muon collider
 - Higgs factory
 - Next energy frontier collider
 - Effective partonic collision energy of the muon collider is much higher vs the same energy hadron collider
 - Snowmass formed "Muon Collider Forum"
- Active developments around the globe
 - CERN/Europe
 - Japan
 - China
- Re-thinking options for colliders in US
 - Fermilab's site fillers

Accelerator Benchmark Parameters

Snowmass 2021 Energy I	Frontier Collider	Study Scenarios
------------------------	-------------------	-----------------

Collider	Type	\sqrt{s}	P [%]	L _{int}
			e^-/e^+	ab^{-1}
HL-LHC	pp	14 TeV		6
ILC	ee	250 GeV	$\pm 80/\pm 30$	2
		350 GeV	$\pm 80/\pm 30$	0.2
		500 GeV	$\pm 80 / \pm 30$	4
		1 TeV	$\pm 80/\pm 20$	8
CLIC	ee	380 GeV	$\pm 80/0$	1
		1.5 TeV	$\pm 80/0$	2.5
		3.0 TeV	$\pm 80/0$	5
CEPC	ee	M_Z		16
		$2M_W$		2.6
		240 GeV		5.6
FCC-ee	ee	M_Z		150
		$2M_W$		10
		240 GeV		5
		$2 M_{top}$		1.5

Snowmass 2021 Energy Frontier Collider Study Scenarios					
Collider	Type	\sqrt{s}	P [%]	L _{int}	
			e^-/e^+	ab^{-1}	
FCC-hh	$\mathbf{p}\mathbf{p}$	100 TeV		30	
LHeC	$^{\mathrm{ep}}$	1.3 TeV		1	
FCC-eh	$^{\mathrm{ep}}$	3.5 TeV		2	
muon-collider (higgs)	$\mu\mu$	125 GeV		0.02	
High energy muon-collider	$\mu\mu$	3 TeV		1	
		10 TeV		10	
		14 TeV		20	
		30 TeV		90	

Note for muon-collider: It is important to note that the plan is not to run subsequently at the various c.o.m etc. These are reference points to explore and assess the physics potential and technology. The luminosity can be varied to determine how best to exploit the physics potential.

- Other options to explore
 - Muon collider at a very high energy (>30 TeV)
 - FCCpp >150 TeV and ~75 TeV
 - Very high energy e⁺e⁻ collider
 - Other emerging ideas: γγ collider, and the C3 e⁺e⁻ collider (C3=Cool Copper Collider)

Fermilab's Site Fillers

Circumference ≥16 km

Linear ~ 7 km

- 1. e+e- Site Filler Higgs Factory
- 2. Muon Collider Higgs Factory
- 3. Muon Collider 3-8 TeV
- 4. pp Site Filler Collider 24-28 TeV

Public Access Areas Euldings 🖉 Parking Lots Ponds Public Access Bicycle Path Trails Streams age St. Gat Main Intentor 0 OpenStreetWap (and) contributors, CC-6/Y-SA

Higgs Factories +

- 1. C3 (Cool Copper) linear collider
- 2. NC RF (CLIC-K) Collider
- 3. SRF-TW linear collider

Close Interactions with Accelerator Frontier Implementation Task Force

- Led by Thomas Roser
- Document/compare options for future colliders
 - Including energy, luminosity, cost, power consumption, etc.

Higgs factory concepts / proposals

Name	Details	POC	AF Group
СерС	e+e-, $\sqrt{s} = 0.24$ TeV, L= 3.0×10^{34}	Jie Gao (gaoj@ihep.ac.cn)	AF3
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.38 TeV, L= 1.5 $ imes 10^{34}$	Steinar Stapnes (Steinar.Stapnes@cern.ch)	AF3
Circular ERL ee collider	e+e-, \sqrt{s} = 0.24 TeV, L= 73 $ imes$ 10 ³⁴	Thomas Roser (roser@bnl.gov)	AF3
FCC-ee	e+e-, \sqrt{s} = 0.24 TeV, L= 17 $ imes$ 10 ³⁴	Katsunobu Oide (katsunobu.oide@ern.ch)	AF3
gamma gamma	X-ray FEL-based $\gamma\gamma$ collider	Tim Barklow (timb@slac.stanford.edu)	AF3
ILC (Higgs factory)	e+e-, \sqrt{s} = 0.25 TeV, L= 1.4 $ imes 10^{34}$	Shin-ichi Michizono (shinichiro.michizono@kek.jp	AF3
LHeC	$ep,\sqrt{s}=$ 1.3 TeV, L= 0.1 $ imes$ 10 ³⁴	Oliver Bruening (oliver.bruening@cern.ch)	AF3
MC (Higgs factory)	$\mu\mu$, $\sqrt{s}=$ 0.13 TeV, L= 0.01 $ imes$ 10 ³⁴	Mark Palmer (mpalmer@bnl.gov)	AF3

High Energy Concepts/Proposals

Name	Details	POC	AF Group
Cryo-Cooled Copper (C^3) linac	e+e-, $\sqrt{s} = 2$ TeV, L= 4.5 $\times 10^{34}$	Emilio Nanni (nanni@slac.Stanford.edu)	AF3
High Energy CLIC	e+e-, $\sqrt{s} = 1.5 - 3$ TeV, L= 5.9 $ imes 10^{34}$	S.Stapnes (steinar.stapnes@cern.ch)	AF4
High Energy ILC	e+e-, $\sqrt{s} = 1 - 3 \text{ TeV}$	Hassan Padamsee (hsp3@cornell.edu)	AF4
FCC-hh	pp, $\sqrt{s} = 100 \mathrm{TeV}$, L= 30 $ imes 10^{34}$	M.Benedikt (Michael.Benedikt@cern.ch)	AF4
SPPC	pp, $\sqrt{s} = 75/150 \text{TeV}$, L= 10 $ imes 10^{34}$	J.Tang (tangjy@ihep.ac.cn)	AF4
Collider-in-Sea	pp, $\sqrt{s} = 500 \mathrm{TeV}$, L= 50 $ imes 10^{34}$	P.McIntyre mcintyre@physics.tamu.edu	AF4
Gamma-gamma	??	W.Krasny (mieczyslaw.witold.krasny@cern.ch)	AF4
LHeC	$ep, \sqrt{s} = 1.3 \text{ TeV}, \text{ L= } 1 \times 10^{34}$	Oliver Bruening (oliver.bruening@cern.ch)	AF4
FCC-eh	$ep, \sqrt{s} = 3.5 \text{TeV}, \text{L=} 1 \times 10^{34}$	Oliver Bruening (oliver.bruening@cern.ch)	AF4
CEPC-SPPpC-eh	$ep,\sqrt{s}=6$ TeV, L= 4.5 $ imes 10^{33}$	Y.Zhang (yzhang@jlab.org)	AF4
VHE-ep	$ep, \sqrt{s} = 9 \text{ TeV}$		AF4
MC – Proton Driver 1	$\mu\mu,\sqrt{s}=$ 1.5 TeV, L= 1 $ imes$ 10 ³⁴	D.Schulte (daniel.schulte@cern.ch)	AF4
MC – Proton Driver 2	$\mu\mu,\sqrt{s}$ = 3 TeV, L= 2 × 10 ³⁴	D.Schulte (daniel.schulte@cern.ch)	AF4
MC – Proton Driver 3	$\mu\mu,\sqrt{s}=10-14\text{TeV},\text{L=}20\times10^{34}$	D.Schulte (daniel.schulte@cern.ch)	AF4
MC – Positron Driver	$\mu\mu,\sqrt{s}=10-14{ m TeV},{ m L}$ = 20 $ imes 10^{34}$	D.Schulte (daniel.schulte@cern.ch)	AF4
LWFA-LC (e+e- and $\gamma\gamma$)	Laser driven plasmas; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$	Carl Schroeder (CBSchroeder@lbl.gov)	AF6
PWFA-LC (e+e- and $\gamma\gamma$)	Beam driven plasmas; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$	Gessner, Spencer J. (sgess@slac.edu)	AF6
SWFA-LC	Structure wakefields; e+e-, $\sqrt{s} = 1 - 30 \text{ TeV}$	Chunguang Jing (jingchg@anl.gov)	AF6

Summary

- Energy Frontier works closely with Accelerator Frontier on multiple topics
 - The goal is the submission of Snowmass reports for the future energy frontier colliders and/or related R&D
- Excellent progress since the resumption of Snowmass activities
 - Continuing development of mature proposals
 - New options are under development, including Fermilab's site fillers
 - Muon collider forum started full-scale activities
 - Implementation Task Force is making excellent progress

