Topical Group RF7, Hadron Spectroscopy

Conveners:

Richard Lebed (Arizona State U.) Tomasz Skwarnicki (Syracuse U.)

Subgroups and their conveners:
Heavy-Quark Conventional Hadrons
Bryan Fulsom (PNNL), Alexis Pompili (U. of Bari), Elena Santopinto (INFN Geona)
Heavy-Quark Exotic Hadrons:
Liupan An (INFN Firenze), Ryan Mitchell (Indiana U.), Sasa Prelovsek (U. of Ljubjana)
Light-Quark Exotic Hadrons:
Sean Dobbs (Florida State U.), Justin Stevens (College of William\&Mary), Adam Szczepaniak (Indiana U.)

Topical Group RF7, Hadron Spectroscopy

- 2014 P5 Report: No explicit mention of hadron spectroscopy, yet some major discoveries happened since then illustrating our lack of understanding of hadronic structures (e.g. solid observations of pentaquark and tetraquark hadrons)
- Main physics issues:
- Only lightest hadrons for each flavor content are predominantly $q \bar{q}$ or $q q q$ Our understanding of full bound-state spectrum of QCD is scandalously poor:
- Are diquarks [qq], strongly motivated by fundamental QCD, good building blocks for more complex hadrons: baryons $q[q q]$, tetraquarks $[q q][\overline{q q}]$, pentaquarks $[q q][q q] \bar{q}, \ldots$?
- Can gluons g be valence hadron constituents: hybrids $q \bar{q} g, q q q g, \ldots$, glueballs $g g$?
- Can mesons bind with other mesons or baryons via nuclear-type forces to create loosely bound "molecular" states?
- Can color fields create compact multiquark states beyond baryons (with or without diquark substructure)?
- How does mixing between different types of bound states of the same quantum numbers affect observable hadrons? How does one distinguish different structures?
- Development of theoretical tools (phenomenology and lattice QCD) needed to predict mass spectrum, decay, and production patterns The same applications are also used by researchers in EF06
- Searches for BSM physics possible in decays of heavy quarkonia

Topical Group RF7, Hadron Spectroscopy

- Request for P5:
- Statement in support of experiments addressing fundamental questions in hadron spectroscopy (previous slide):
- At present, the field is driven by the experiments rather than theory
- Lasting legacy and future opportunities at heavy-flavor experiments: LHCb, b-factories (Belle II), charm-factories (BESIII and future tau-charm factory)
- Opportunities at high- p_{T} experiments (CMS, ATLAS) using special final states like, e.g., $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$(tetraquarks decaying to $\Upsilon \Upsilon, J / \psi \Upsilon, J / \psi J / \psi$)
- Synergistic activities in nuclear/medium-energy community (photoproduction at JLab and EIC [U.S.-based!], production in heavy-ion collisions)
- Need for collaboration of experimentalists with theorists on difficult aspects of amplitude analyses of the data (e.g., the JPAC Group)
- Statement in support of theoretical efforts to improve phenomenological and lattice QCD modeling of hadron spectrum and their decay \& production properties:
- U.S. involvement has fallen far behind Europe and Asia


```
GlueX @ Jab
    (Dobbs)
```

CMS (\& ATLAS)
(Pompili)

- Whitepaper plans:
- Interim meetings in late fall to check white paper progress
- White papers due (RF7 internal deadline) February 1, 2022
- RF7 report due March 31, 2022
- Previous meetings: https://snowmass21.org/rare/hadron spectroscopy
- Upcoming plans:
- One final workshop, on Monday, October 25, 9:30am US/Central, summarizing experimental discoveries and theoretical advances made just during the 2021 Snowmass pause $\quad \Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-} \quad B^{0} \rightarrow J / \psi p \bar{p}$

many $X \rightarrow J / \psi \phi$ states (additional ones in 2021)

$M\left(D_{S}^{-} D^{(*) 0}\right)$ via Recoil Mass against K^{+}

