Topical Group RF7, Hadron Spectroscopy

Conveners:

Richard Lebed (Arizona State U.)

Tomasz Skwarnicki (Syracuse U.)

Subgroups and their conveners:

Heavy-Quark Conventional Hadrons
Bryan Fulsom (PNNL), Alexis Pompili (U. of Bari), Elena Santopinto (INFN Geona)

Heavy-Quark Exotic Hadrons:

Liupan An (INFN Firenze), Ryan Mitchell (Indiana U.), Sasa Prelovsek (U. of Ljubjana)

Light-Quark Exotic Hadrons:

Sean Dobbs (Florida State U.), Justin Stevens (College of William&Mary), Adam Szczepaniak (Indiana U.)

Topical Group RF7, Hadron Spectroscopy

- 2014 P5 Report: No explicit mention of hadron spectroscopy, yet some major discoveries happened since then illustrating our lack of understanding of hadronic structures (e.g. solid observations of pentaquark and tetraquark hadrons)
- Main physics issues:
 - Only lightest hadrons for each flavor content are predominantly $q\bar{q}$ or qqqOur understanding of full bound-state spectrum of QCD is scandalously poor:
 - Are diquarks [qq], strongly motivated by fundamental QCD, good building blocks for more complex hadrons: baryons q[qq], tetraquarks $[qq][\overline{qq}]$, pentaquarks $[qq][qq]\overline{q}$, ...?
 - Can gluons g be valence hadron constituents: hybrids $q\bar{q}g$, qqqg, ..., glueballs gg?
 - Can mesons bind with other mesons or baryons via nuclear-type forces to create loosely bound "molecular" states?
 - Can color fields create compact multiquark states beyond baryons (with or without diquark substructure)?
 - How does mixing between different types of bound states of the same quantum numbers affect observable hadrons? How does one distinguish different structures?
 - Development of theoretical tools (phenomenology and lattice QCD)
 needed to predict mass spectrum, decay, and production patterns
 The same applications are also used by researchers in EF06
 - Searches for BSM physics possible in decays of heavy quarkonia

Topical Group RF7, Hadron Spectroscopy

Request for P5:

- Statement in support of experiments addressing fundamental questions in hadron spectroscopy (previous slide):
 - At present, the field is driven by the experiments rather than theory
 - Lasting legacy and future opportunities at heavy-flavor experiments: LHCb, b-factories (Belle II), charm-factories (BESIII and future tau-charm factory)
 - Opportunities at high- p_T experiments (CMS, ATLAS) using special final states like, e.g., $\mu^+\mu^-\mu^+\mu^-$ (tetraquarks decaying to $\Upsilon\Upsilon$, $J/\psi\Upsilon$, $J/\psi J/\psi$)
 - Synergistic activities in nuclear/medium-energy community (photoproduction at JLab and EIC [U.S.-based!], production in heavy-ion collisions)
 - Need for collaboration of experimentalists with theorists on difficult aspects of amplitude analyses of the data (e.g., the JPAC Group)
- Statement in support of theoretical efforts to improve phenomenological and lattice QCD modeling of hadron spectrum and their decay & production properties:
 - U.S. involvement has fallen far behind Europe and Asia

- Previous meetings: https://snowmass21.org/rare/hadron_spectroscopy
- Upcoming plans:
 - One final workshop, on Monday, October 25, 9:30am US/Central, summarizing experimental discoveries and theoretical advances made just

