

Research at FAST/IOTA: Strategy and **Priorities**

Alexander Valishev 2021 IOTA/FAST Collaboration Meeting 27 October 2021

IOTA/FAST Strategic Goals – Unchanged

- Complete the FAST facility construction and commissioning
 - 1. Assemble and commission the IOTA proton injector
 - 2. Commission IOTA with proton beams
 - 3. Complete the commissioning of FAST SRF linac
- Plan and execute the experimental program at IOTA and in the injector machines
 - 1. Conduct high-priority research in IOTA
 - 2. Develop IOTA experimental capabilities
 - Allow concurrent experiments in IOTA and FAST as afforded by resources
- Expand the IOTA/FAST Collaboration
 - 1. Establish efficient facility operations
 - 2. Develop the collaborative proposal-driven framework
 - 3. Establish FAST as training center

Priorities

In developing the priorities and schedules we balance present research capabilities, potential impact and available resources

- I. IOTA research focused on beam intensity and brightness in proton rings mostly driven by the development of Fermilab's high-energy neutrino program
 - Prerequisite is the completion of the proton injector and IOTA commissioning with protons
 - Research that can be done with present capabilities
- II. High-impact science aligned with GARD mission
- III. Collaboration-driven research seeding potentially highimpact directions

I. Research Focused on Beam Intensity in Rings

Key components of this research topic are

- Suppression of coherent instabilities via Landau damping
 - Can be studied with both electrons and protons
 - Possible technologies
 - Nonlinear Integrable Optics
 - Electron Lenses
- Mitigation of space-charge effects
 - Requires proton beam in IOTA
 - Possible technologies
 - Nonlinear Integrable Optics
 - Electron Lenses
 - Electron columns

II. High-Impact GARD Research

Nonlinear Integrable Optics

- Can be studied with electrons
- Several options for implementation: octupole lenses, ellipticpotential magnet, electron lenses

Optical Stochastic Cooling

- Can do now with electrons
- Development of novel beam instrumentation
 - Large dynamic range halo monitoring
- SRF acceleration: beam intensity and brightness
 - Achievement of ILC beam acceleration and beam parameters

III. Collaboration-Driven Research & Development

- Radiation generation
- Electron-Ion Collider R&D
- Collaboration with other beam facilities and projects
 - FACET-II and other accelerator test facilities
 - LCLS-II
 - PIP-II
- Quantum science
- Education and training

Approach to Realization

- Balance priorities and resources
- Interleave facility development with beam runs
- Staged approach to research

Research Staging

Nonlinear Integrable Optics

- Phase I research concentrates on the academic aspect of single-particle motion stability using electron beams
 - Run-1 2019, Run-2 2020
- Phase II intense-beam studies with protons
 - 2021 and beyond

Optical Stochastic Cooling

- Without optical amplifier
 - Run-3 2020-21
- With optical amplifier

IOTA/FAST Team

- FAST Facility Dept Accelerator development, maintenance and operations
 - Research support personnel
- Accelerator Research Dept Planning and execution of research program
 - Scientific staff
 - Postdocs and students (2×PhD graduates this year!)
- Support Depts (on-demand) Mechanical Support, Electrical Engineering, Controls, Instrumentation
 - Effort is shifted around to support FAST/IOTA and other laboratory activities – very efficient and eliminates "Standing-Army" issues
- Collaborators

IOTA/FAST Recent Timeline

Research in IOTA/FAST Experimental Run 2

Broad program: in all 9 experiments took data over 60 shifts and produced relevant results. Engagement of outside collaborators (CERN, SLAC, Jlab, Uchicago, NIU) and 6 graduate students.

1. Nonlinear Optics Measurements and Correction in the IOTA Ring	PI M.Hofer (R.Tomas), CERN
2. Study of Intrabeam Scattering	V.Lebedev, FNAL
3. Nonlinear Integrable Optics in Run 2	A.Valishev, FNAL
4. Angular Measurement of Photons from Undulator Radiation in IOTA's Single Electron Mode	E.Angelico (H. Frisch/S. Nagaisev), UChicago
5. Measurement of Spontaneous Undulator Radiation Statistics Generated by a Single Electron	S.Nagaitsev, I. Lobach, FNAL/UChicago
6. Fluctuations in undulator radiation	I.Lobach (S. Nagaitsev/G. Stancari), UChicago
7. Instability thresholds and integrable optics	N.Eddy, FNAL
8. Investigations of Long-range and Short-range Wakefield Effects on Beam Dynamics in TESLA-type Superconducting Cavities	A.Lumpkin, FNAL
9. Generation, Transport and Diagnostics of High-charge Magnetized Beams	P.Piot, NIU/ANL

Research in IOTA/FAST Experimental Run 3

Unlike Run-2, the program of Run-3 was focused on OSC. Beam time and resources were allocated to small number of other experiments.

1. Optical Stochastic Cooling Experiment: Apparatus Commissioning	PI J.Jarvs, FNAL
2. Optical Stochastic Cooling Experiment: Demonstration Experiment	J.Jarvis, FNAL
3. Optical Stochastic Cooling Experiment: Systematic Studies of OSC Concepts	J.Jarvis, FNAL
5. Measurement of Spontaneous Undulator Radiation Statistics Generated by a Single Electron	S.Nagaitsev, I. Lobach, FNAL/UChicago
6. Fluctuations in undulator radiation	I.Lobach (S. Nagaitsev/G. Stancari), UChicago
8. Investigations of Long-range and Short-range Wakefield Effects on Beam Dynamics in TESLA-type Superconducting Cavities	A.Lumpkin, FNAL
9. Elegant- and ACL-Based Trajectory Tuning for the FAST Facility	J.Ruan, FNAL

Future Vision

- Run-2 was cut short on March 21, 2020 due to Illinois stay-at-home order. Completion of high-impact NIO research requires e- run
- IPI commissioning can be done in parallel with e- operations
- * Run-4 length minimum 3 months
- ** Run-5 may be separate for e- and p+

Summary

- IOTA/FAST team continues to pursue established goals
 - Development of facility capabilities
 - Execution of experimental program
 - Collaboration and training
- Producing experimental results has been our top priority
 - Nonlinear integrable optics in run-2
 - World's first demonstration of OSC in run-3
 - Excellent results in photon physics, instrumentation, technology
- Team pushes hard to complete two major facility development projects
 - IOTA Proton Injector
 - Electron Lens
- This meeting to foster collaboration and help with development of science program and priorities

