Nonlinear Integrable Optics Experiments in IOTA run 4

A.Valishev, N.Kuklev, A.Romanov, G.Stancari, S.Szustkowski 2021 IOTA/FAST Collaboration Meeting 28 October 2021

Nonlinear Integrable Optics - Overall Goals

- We want to build an optical focusing system that
a. Is strongly nonlinear = strong dependence of oscillation frequency on amplitude
b. Is 2 D integrable $=$ stable $=$ free from resonances
c. Can be realized with magnetic fields in vacuum
- Mathematically, that means the system should
- Possess two integrals of motion
- Have steep Hamiltonian
- Practical consequences
- Reduced chaos in single-particle motion
- Strong immunity to collective instabilities via Landau damping

NIO Research at IOTA

1. Experimentally demonstrate viability of theoretical concepts

- Very strong academic interest - stability of nonlinear systems
- Most importantly, show whether nonlinear focusing lattices offer practical benefits relative to linear lattices

2. Establish limits of applicability

- Are requirements to implementation tolerances supported by present-day technology?

3. Develop practical solutions for circular accelerators pushing the envelope in beam brightness without significant cost increase

Phased Approach

- Phase I - research concentrates on the academic aspect of single-particle motion stability using electron beams
- Demonstrate large amplitude-dependent detuning with conservation of dynamic aperture
- Demonstrate practical machine tuning and limits of integrable optics stability in terms of imperfections, other nonlinearities, impact of longitudinal dynamics
- Practical benefits in terms of improvement of coherent beam stability
- Phase II - intense-beam studies with protons
- Interplay between NIO and space-charge
- Effect of NIO on halo formation, emittance growth and losses

Components of IOTA NIO Program

1. System with 1 invariant, aka Quasi-Integrable or HenonHeiles Type

- Implemented with Octupole string in BL straight

2. System with 2 invariants, aka Danilov-Nagaitsev or Elliptic potential

- Implemented with special magnet (RadiaBeam) in BR straight
- Effect of nonlinear optics on coherent beam stability (as a separate experiment NIOLD)

Implementation of NIO Systems

1 Start with a round axially-symmetric linear lattice (FOFO) with the element of periodicity consisting of
a. Drift L
b. Axially-symmetric focusing block "T-insert" with phase advance $\mathrm{n} \times \pi$

2 Add special nonlinear potential $V(x, y, s)$ in the drift

- Results in time-independent Hamiltonian

Henon-Heiles Type Systems

- For example, build V with Octupoles

$$
\begin{aligned}
& V(x, y, s)=\frac{\kappa}{\beta(s)^{3}}\left(\frac{x^{4}}{4}+\frac{y^{4}}{4}-\frac{3 x^{2} y^{2}}{2}\right) \\
& U=\kappa\left(\frac{x_{N}^{4}}{4}+\frac{y_{N}^{4}}{4}-\frac{3 y_{N}^{2} x_{N}^{2}}{2}\right) \\
& H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{k}{4}\left(x^{4}+y^{4}-6 x^{2} y^{2}\right) \\
& \text { - Only one integral of motion }-H
\end{aligned}
$$

System with 2 Invariants - Danilov-Nagaitsev

- Shape V to obtain second invariant

Implementation of NIO in IOTA

Practical requirements:

- Round axiallysymmetric linear lattice (FOFO)
- $2 \pi x n$ phase advance
- Drift with $\beta_{x}=\beta_{y}$, no dispersion

Run-2 Goals and Objectives

1. Demonstrate large (as predicted by modeling) nonlinear amplitude-dependent tune shift without reduction of dynamical aperture

- For QI system as a function of Q_{0} and strength $=t$
- For DN system as a function of strength $=t$

2. Demonstrate conservation of dynamic invariants

- Restore p, p_{x}, y, p_{y} from TBT data

3. Systematic study of sensitivity of the NIO systems to imperfections

- T-insert mismatch
- Intrinsic resonances
- Effect of sextupoles
- $Q_{0}=1 / 4$ with octupoles
- Effect of integer resonance for DN system at high t

Experimental Method

- Kick beam with V/H kicker to selected amplitude
- Record BPM turn-by-turn positions and beam intensity

0.6kV Vkick 1A octupoles 100 turns

Run-2 Results

1. Demonstrate large (as predicted by modeling) nonlinear amplitude-dependent tune shift without reduction of dynamical aperture
\checkmark For QI system as a function of Q_{0} and strength $=t$

- Good agreement with simulations
\checkmark For DN system as a function of strength $=t$
- Poor DA at some t or amplitude - need Stage 3 experiments
N.Kuklev

S.Szustkowski

Run-2 Results

2. Demonstrate conservation of dynamic invariants

- Restore p, p_{x}, y, p_{y} from TBT data
- Dynamical variable and invariant restoration difficult due to short length of useful dipole moment caused by filamentation (decoherence)
- Chromaticity
- Nonlinearity

$$
e^{-\alpha^{2} / 2} \frac{1}{1+\theta^{2}} \exp \left[-\frac{A^{2}}{2 \sigma^{2}} \frac{\theta^{2}}{1+\theta^{2}}\right]
$$

$$
\theta=4 \pi \Delta Q N
$$

$$
\alpha=\frac{2 \xi \sigma_{E} \sin \pi Q_{S} N}{Q_{S}}
$$

Only 25 turns!

DN $\mathrm{t}=0.363$ diagonal kick
(no beam loss)

Run-2 Results

3. Systematic study of sensitivity of the NIO systems to imperfections - not started due to run cancellation (covid shutdown)

- T-insert mismatch
- Intrinsic resonances
- Effect of sextupoles
- $Q_{0}=1 / 4$ with octupoles

Effect of integer resonance for DN system at high t

Lessons Learned and Selected Issues

- Nonlinear magnet worked well
- Octupole string (also re-tested in run-3)
- Numerous problems with alignment
- Intermittent short
- Machine / beam
- Good tuning of nominal lattice
- 1% beta-function, 0.001-0.003 betatron phase, 50 um orbit centering
- Good machine aperture
- Not well understood sextupole nonlinearity / chromaticity

Lessons Learned and Selected Issues

- Instrumentation
- BPM TBT worked well at currents of $>1 \mathrm{~mA}$ (100um noise or better).
- BPM closed orbit mode works well at low currents (extensively used in run-3).
- Excellent performance of synclight system.
- Software
- SixDSim - LOCO (machine mode-switching fully implemented in run-3).
- pyIOTA software by N.Kuklev capable of automated data-taking.

Improvements Since Run-2

- Realigned selected quadrupoles aiming to reduce local coupling in BR \rightarrow lower skew corrector current
- Still needs further work
- Commissioned 150 MeV operation
- This will result in much better signal quality due to smaller beam size and momentum spread
- Improved alignment of injection section (better tuning range)
- Improved stability of quadrupole power supplies
- Streamlined operational procedures
- Single-electron tracking shows great promise
- As tool for detuning measurement
- Potentially for phase-space reconstruction

Improvement of NIO Implementation

- Presently, both QI and DN systems are implemented with equidistant 'thin' kicks (Euler integrator)
- The representation of the nonlinear potential can be improved via element placement equidistant in phase (e.g. Ruth symplectic integrator S.Baturin, arXiv:1908.03520)
- Simulations show that system with $1 / 2$ the segments can achieve the same preservation of invariants
- Reassembly of octupole string with different spacing would allow for test of such approach

Proposed Goals for NIO in Run-4

Operating IOTA with electron beam at 150 MeV

1. Perform systematic study of sensitivity of the NIO systems to imperfections (phase 3)

- T-insert mismatch
- Intrinsic resonances
- Effect of sextupoles
- $Q_{0}=1 / 4$ with octupoles
- Effect of integer resonance for DN system at high t

2. Implement QI system with small (9) number of octupoles aiming to achieve performance of run-2
3. Collect data for dynamical variable reconstruction and demonstration of invariant preservation

Necessary Actions

- Shutdown
- Reconfigure IOTA for NIO
- Remove OSC
- Reinstall DN magnet
- Rebuild octupole string J

Required for proton run

- Operations
- Commission NIO lattice at 150 MeV
- Improve coupling near BR section
- Commission sextupole system Important for future
- Understand IOTA chromaticity correction J OSC research

Conclusion

- IOTA run-2 NIO experiments produced exciting results, demonstrating record-high nonlinear amplitude dependent tune shifts
- System is robust to perturbations, worked well despite limited knowledge of the machine at the time
- However, full scientific potential was not realized. Planned program was not executed
- Significant progress on IOTA was made during run-3
- New approach to approximation of continuous potential with discrete elements may result in better performance
- NIO program being very demanding to the level of machine development pushes the team to implement improvements - Electron run would help OSC, mitigate risk for proton ops.

