

Nonlinear Integrable Optics Experiments in IOTA run 4

A.Valishev, N.Kuklev, A.Romanov, G.Stancari, S.Szustkowski
2021 IOTA/FAST Collaboration Meeting
28 October 2021

Nonlinear Integrable Optics – Overall Goals

- We want to build an optical focusing system that
 - a. Is strongly nonlinear = strong dependence of oscillation frequency on amplitude
 - b. Is 2D integrable = stable = free from resonances
 - c. Can be realized with magnetic fields in vacuum
- Mathematically, that means the system should
 - Possess two integrals of motion
 - Have steep Hamiltonian
- Practical consequences
 - Reduced chaos in single-particle motion
 - Strong immunity to collective instabilities via Landau damping

🌫 Fermilab

NIO Research at IOTA

- 1. Experimentally demonstrate viability of theoretical concepts
- Very strong academic interest stability of nonlinear systems
- Most importantly, show whether nonlinear focusing lattices offer practical benefits relative to linear lattices
- 2. Establish limits of applicability
- Are requirements to implementation tolerances supported by present-day technology?
- 3. Develop practical solutions for circular accelerators pushing the envelope in beam brightness without significant cost increase

Phased Approach

- Phase I research concentrates on the academic aspect of single-particle motion stability using electron beams
 - Demonstrate large amplitude-dependent detuning with conservation of dynamic aperture
 - Demonstrate practical machine tuning and limits of integrable optics stability in terms of imperfections, other nonlinearities, impact of longitudinal dynamics
 - Practical benefits in terms of improvement of coherent beam stability
- Phase II intense-beam studies with protons
 - Interplay between NIO and space-charge
 - Effect of NIO on halo formation, emittance growth and losses

Components of IOTA NIO Program

- 1. System with 1 invariant, aka Quasi-Integrable or Henon-Heiles Type
 - Implemented with Octupole string in BL straight
- 2. System with 2 invariants, aka Danilov-Nagaitsev or Elliptic potential
 - Implemented with special magnet (RadiaBeam) in BR straight
- Effect of nonlinear optics on coherent beam stability (as a separate experiment NIOLD)

Implementation of NIO Systems

1 Start with a round axially-symmetric *linear* lattice (FOFO) with the element of periodicity consisting of

a. Drift L

b. Axially-symmetric focusing block "T-insert" with phase advance $n \times \pi$

- 2 Add special nonlinear potential V(x,y,s) in the drift
- Results in time-independent Hamiltonian

Henon-Heiles Type Systems

• For example, build *V* with Octupoles

$$V(x, y, s) = \frac{\kappa}{\beta(s)^3} \left(\frac{x^4}{4} + \frac{y^4}{4} - \frac{3x^2y^2}{2} \right)$$

$$U = \kappa \left(\frac{x_N^4}{4} + \frac{y_N^4}{4} - \frac{3y_N^2x_N^2}{2} \right)$$

$$H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + \frac{k}{4} \left(x^4 + y^4 - 6x^2y^2 \right)$$

- Only one integral of motion H
- Tune spread limited to ~12% of Q_0

System with 2 Invariants – Danilov-Nagaitsev

Shape V to obtain second invariant

Implementation of NIO in IOTA

Round axiallysymmetric linear lattice 3.5 **↑** β(s) $1/\beta^3(m^{-3})$ (FOFO) o c tupole relative strength Tinsert (E) 2.0 (E) 2.0 1.5 $-2\pi x n$ phase n 0 0 advance 1.0 0 Û 0.5 Drift with $\beta_x = \beta_v$, no S dispersion IOTA Version 6.5 2-magnet 10. 3. β_x 9. Nonlinear insertions 2. Bending magnets 8. Quadrupoles 7. 1. Sextupole correctors β_x , β_x [m] 6. D_x [m RF cavity 0.0 Combined dipole and skew-guad correctors 5. Horizontal correctors 4. Vertical correctors 3. Horizontal kicker 2. Vertical kicker -2. Electrostatic BPMs (position, turn-by-turn) 1. Sync. light monitors (position and shape) 0.0 -3. 0.0 15. 20. 25. 30. 35. 10. 40. 5. s [m] 🚰 Fermilab

Practical requirements:

•

Run-2 Goals and Objectives

- 1. Demonstrate large (as predicted by modeling) nonlinear amplitude-dependent tune shift without reduction of dynamical aperture
 - For QI system as a function of Q_0 and strength = t
 - For DN system as a function of strength = t
- 2. Demonstrate conservation of dynamic invariants
 - Restore p_{x} , y_{y} , p_{y} from TBT data
- 3. Systematic study of sensitivity of the NIO systems to imperfections
 - T-insert mismatch
 - Intrinsic resonances
 - Effect of sextupoles
 - $Q_0 = \frac{1}{4}$ with octupoles
 - Effect of integer resonance for DN system at high *t*

Experimental Method

- Kick beam with V/H kicker to selected amplitude
- Record BPM turn-by-turn positions and beam intensity

0.6kV Vkick 1A octupoles 100 turns

Run-2 Results

- 1. Demonstrate large (as predicted by modeling) nonlinear amplitude-dependent tune shift without reduction of dynamical aperture
 - ✓ For QI system as a function of Q_0 and strength = t
 - Good agreement with simulations
 - ✓ For DN system as a function of *strength* = t
 - Poor DA at some t or amplitude need Stage 3 experiments

Run-2 Results

- 2. Demonstrate conservation of dynamic invariants
 - Restore $p_{,p_x,y,p_y}$ from TBT data
 - Dynamical variable and invariant restoration difficult due to short length of useful dipole moment caused by filamentation

🛠 Fermilab

Run-2 Results

- 3. Systematic study of sensitivity of the NIO systems to imperfections not started due to run cancellation (covid shutdown)
 - T-insert mismatch
 - Intrinsic resonances
 - Effect of sextupoles
 - $Q_0 = \frac{1}{4}$ with octupoles
 - \checkmark Effect of integer resonance for DN system at high *t*

Lessons Learned and Selected Issues

- Nonlinear magnet worked well
- Octupole string (also re-tested in run-3)
 - Numerous problems with alignment
 - Intermittent short
- Machine / beam
 - Good tuning of nominal lattice
 - 1% beta-function, 0.001-0.003 betatron phase, 50um orbit centering
 - Good machine aperture
 - Not well understood sextupole nonlinearity / chromaticity

Lessons Learned and Selected Issues

- Instrumentation
 - BPM TBT worked well at currents of >1 mA (100um noise or better).
 - BPM closed orbit mode works well at low currents (extensively used in run-3).
 - Excellent performance of synclight system.
- Software
 - SixDSim LOCO (machine mode-switching fully implemented in run-3).
 - pyIOTA software by N.Kuklev capable of automated data-taking.

Improvements Since Run-2

- Realigned selected quadrupoles aiming to reduce local coupling in BR → lower skew corrector current
 - Still needs further work
- Commissioned 150MeV operation
 - This will result in much better signal quality due to smaller beam size and momentum spread
- Improved alignment of injection section (better tuning range)
- Improved stability of quadrupole power supplies
- Streamlined operational procedures
- Single-electron tracking shows great promise
 - As tool for detuning measurement
 - Potentially for phase-space reconstruction

Improvement of NIO Implementation

- Presently, both QI and DN systems are implemented with equidistant 'thin' kicks (Euler integrator)
- The representation of the nonlinear potential can be improved via element placement equidistant in phase (e.g. Ruth symplectic integrator S.Baturin, arXiv:1908.03520)
- Simulations show that system with ½ the segments can achieve the same preservation of invariants
- Reassembly of octupole string with different spacing would allow for test of such approach

Proposed Goals for NIO in Run-4

Operating IOTA with electron beam at 150MeV

- 1. Perform systematic study of sensitivity of the NIO systems to imperfections (phase 3)
 - T-insert mismatch
 - Intrinsic resonances
 - Effect of sextupoles
 - $Q_0 = \frac{1}{4}$ with octupoles
 - Effect of integer resonance for DN system at high *t*
- 2. Implement QI system with small (9) number of octupoles aiming to achieve performance of run-2
- 3. Collect data for dynamical variable reconstruction and demonstration of invariant preservation

Necessary Actions

- Shutdown
 - Reconfigure IOTA for NIO
 - Remove OSC
 - Reinstall DN magnet
 - Rebuild octupole string
- Operations
 - Commission NIO lattice at 150MeV
 - Improve coupling near BR section
 - Commission sextupole system
 - Understand IOTA chromaticity correction \int OSC research

Required for proton run

Important for future

Conclusion

- IOTA run-2 NIO experiments produced exciting results, demonstrating record-high nonlinear amplitude dependent tune shifts
 - System is robust to perturbations, worked well despite limited knowledge of the machine at the time
- However, full scientific potential was not realized. Planned program was not executed
 - Significant progress on IOTA was made during run-3
- New approach to approximation of continuous potential with discrete elements may result in better performance
- NIO program being very demanding to the level of machine development pushes the team to implement improvements
 - Electron run would help OSC, mitigate risk for proton ops.

🔁 Fermilab