

Two-Photon Interferometry of Undulator Radiation

PI: Sergei Nagaitsev (Fermilab/UChicago)

G. Stancari, A. Romanov, I. Lobach + interest from UC Berkeley and others (project funded by Fermilab LDRD)

Oct. 28, 2021

Double-slit experiment with single photons

Buildup of interference pattern from individual photon detections

Angular intensity distribution

Simulation:

Photo:

7 measured x-scans at different values of y (far from the focal plane):

Parameters of the undulator in IOTA

Many thanks to our collaborators from SLAC for providing the undulator

Undulator:

- Number of periods: $N_{\rm u} = 10.5$
- Undulator period length: $\lambda_{\rm u} = 55 \ {\rm mm}$
- Undulator parameter (peak): $K_{
 m u}=1$ $K_{
 m u}=rac{eB\lambda_{
 m u}}{2\pi m_{
 m e}c}$
- Fundamental of radiation: 1.1 um
- Second harmonic: visible light

Motivation

Quantum effects in undulator radiation:

- quantized radiation
 (more than one photon can be emitted per pass)
- 2) quantum nature of an electron in a storage ring (the electron wavefunction's size may be measurable)

Single electron experiments in IOTA:

- Photon statistics (number/temporal distribution) (2020-21)
- The difference in arrival times of the photons emitted in one photon pair (tens of femtoseconds)
- Transverse correlation/entanglement can be tested with a 2D array of single photon detectors

Description of single electron's undulator radiation in Quantum Electrodynamics

- Important parameter: electron recoil $\chi = \frac{E_{photon}}{E_{electron}}$ (in IOTA, $\chi \sim 10^{-8}$)
- $\chi \gtrsim 0.001$, Dirac-Volkov model (quantum electron + quantized radiation + classical undulator field)

*would be observable at FACET-II with an optical undulator

• $\chi \lesssim 0.001$, Glauber's model (IOTA's case) (classical electron + quantized radiation)

Experiments at VEPP-3 (BINP) – T. Shaftan at al. (1994-97)

Conclusions (by T. Shaftan)

- For a large number of electrons we measure the density distribution in the bunch (e_A- e_B events)
- For a few electrons we measure the distribution, dominated by (e_A- e_A events)
- For a single electron the width of the distribution is equal to the time resolution (~1 ns rms) of the meas. system →
- Correlation length of UR intensity for a single electron is measured to be much shorter than the natural bunch length
- Interpretation: localization length of a single electron is much shorter than the bunch length
- How short is the localization length?

2018 workshop on Single Electron experiments in IOTA

- https://indico.fnal.gov/event/18395/
- We concluded that we need to detect 2 photons within the formation length
 - Time resolution needs to improve: 1 ns \rightarrow <10 fs
- This resolution is possible with a two-photon interferometer
 - Resolution < optical wavelength is already achieved

Mach-Zehnder interferometry of undulator radiation

- Interference of the photons in emitted photon pairs with two detectors
- IOTA Run 4 proposal

Mach–Zehnder interferometer:

*light pulse length $\approx 30 \text{ fs}$

- Output 1: $E(t) E(t + \delta t)$
- Output 2: $E(t) + E(t + \delta t)$

Measurement of the light pulse shape in time domain

Design of the experiment with a single electron

Picosecond event timer

(dead time < IOTA revolution period)

provided by G. Stancari

Record all events for 20 sec - 2 min

	Revolution number	Detection time relative to 10 IA revolution marker, ps
0	51	62977.0
1	171	64337.0
2	239	62389.0
3	598	63454.0
4	999	64303.0
1490071	450123392	63592.0
1490072	450123677	62846.0
1490073	450123880	62373.0
1490074	450123931	62842.0
1490075	450124364	62746.0

1490076 rows × 2 columns

Undulator radiation

IOTA

revolution marker

Single Photon Avalanche Diode (SPAD) detector (two in hand)

Excelitas SPCM-AQRH-10

Active area (diameter)	180 μm	
Detector efficiency at 650 nm	65%	
Dark count	~100 Hz	*with gating <
Dead time	22 ns	*IOTA period is
Pulse height	2 V	
Pulse length	10 ns	
Transit time spread (TTS)	0.35 ns	

<10 Hz

is 133 ns

Each detection event creates a pulse of the same height and width:

Typical Photon Detection Efficiency (PDE) vs. Wavelength

Photocount rate. Simulation vs. measurements (100 MeV)

Total efficiency in the simulation takes into account:

- two mirrors,
- vacuum chamber window
- one lens
- low-pass filter
- high-pass filter
- quantum efficiency of the detector.

Simulated photocount rate for one electron: 53kHz

However, aberrations in the lens result in significant light spot size in the focal plane and not all the light is collected by the detector:

Measured rate for one electron: 25kHz, i.e., 1 detection per 304 IOTA revolutions

*dark counts: ~100Hz (with gating <10Hz)

Two SPAD detectors (June 2021) at 100 MeV

So far, no deviations from our expectations

Detector #1: ~30 kHz

Detector #2: ~15 kHz

10/28/21

Detector #1 & Detector #2: ~70 Hz

Beamsplitter specifications

BSW27 - Ø2" 50:50 UVFS Plate Beamsplitter, Coating: 350 - 1100 nm, t = 8.0 mm

Detector #1: ~30 kHz Detector #2: ~15 kHz

10/28/21

Detector #1 & Detector #2: ~70 Hz

150-MeV beam tests

- The fundamental shifted from 1160 nm to 480 nm
- One SPAD configuration: 27 kHz
- Two-SPAD configuration:

Detector #1: 8.9 kHz

Detector #2: 4.6 kHz

 We prefer to operate at the fundamental of undulator radiation in order to have non-zero intensity at zero-angle

Mach-Zehnder interferometry with a single electron

Very precise adjustable optical delay

10/28/21

Vanopositioners

nanopositioning made simple

ECSx3030/AI/NUM/RT

linear bearing based nanopositioner for horizontal motion

Future experiments. Angular correlation/entanglement of emitted photon pairs with an LAPPD detector

- Preliminary practice measurements have been carried out by Evan Angelico (UChicago) with a 2x2 MCP-PMT array
 - Evan's PhD thesis (May 2020)

2 cm Planacon MCP-PMT 2x2 array

20 cm LAPPD <1 mm spatial resolution

LAPPD: Large Area Picosecond Photon Detector

Summary

- We are making steady progress towards <u>first</u> ever undulator radiation two-photon interference measurement.
- So far, good progress with preliminary measurements
- Prefer to operate with 150-MeV electrons in order to have non-zero intensity on axis.

