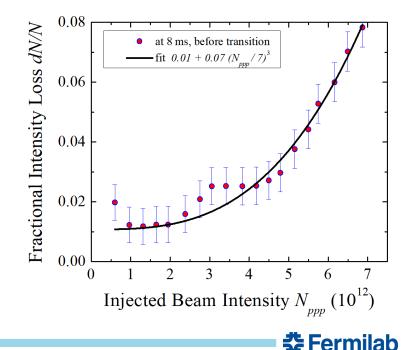
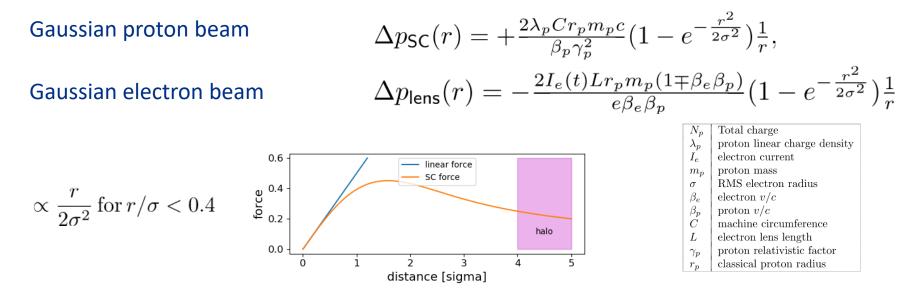


Space Charge Compensation Studies with Electron Lenses

Eric G. Stern for the Space Charge Working Group 2021 IOTA/FAST Collaboration Meeting 29 October 2021

Outline


- Motivation for electron lenses
- Simulation results
 - Perfect electron lenses
 - Gaussian electron lenses
- Physics motivated explanation
- Implications for IOTA experiments
- Summary


Space Charge Problems in Low Energy Injectors

- Experience shows that space charge induces losses in accelerators.
- Progress in science requires higher intensity beams.
- Maximum acceptable loss ~1 W/m.
- Options to increase maximum intensity:
 - Collimation
 - Enlarging apertures
 - Phase space shaping to reduce charge density
 - Increasing injector energy
 - Active compensation with electron lenses

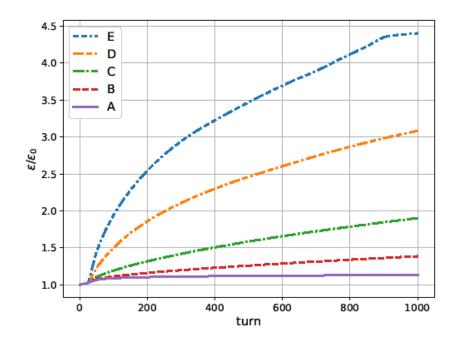
Eldred, et al, Intensity effects in the Fermilab Booster, PRAB 2021

Electron lens active compensation

- Space charge strength $\lambda_p C$ balanced by electron lens strength $\sum I_e L$
- Electron beam may be modulated in time
- sign for e beam propagating in the same direction as the p beam
 - Electron lens compensation more effective for non-relativistic or coasting beams

🛠 Fermilab

Particle simulations of SC and e-lens

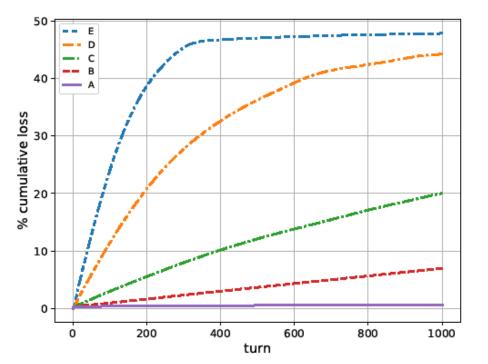

- Simulations with Synergia, PIC code for collective effects developed at Fermilab
- 3D fully self-consistent space charge solver
- 16M or 4M macro particles (no significant difference observed)
- Simulations with 12-fold symmetry, then with single quadrupole errors of 0.5%, 1.0%, 2.0%, 3.0%.
- Simulate RMS emittance and 99.9% emittance to characterize halo development over 1000 turns.
- For the same cases, calculate particle loss at 4σ aperture.

	Defecusing -	Parameter	Value	Unit	Parameter	Value	Unit
	Defocusing -	Total length C	288.0	m	RMS bunch length σ_s	0.5	m
	Electron len	Periodicity	12	FODO	RMS bunch $\Delta p/p$ spread	0.00288	
	Facusing	Beam kinetic energy	0.8	$\mathrm{G}e\mathrm{V}$	RMS geometric x, y emittance ϵ	1.0e-6	m.rad
-	Focusing	Lorentz factors β_p , γ_p	0.84,1.85		Beta-functions at el. lens β_x , β_y	17.28,17.27	m
- +	RF Cavity	RF frequency	43.814	MHz	$x, y \text{ tunes } Q_x, Q_y$	3.72, 3.84	
ŧ	-	Phase advance between compensators	111.6°		x, y chromaticity Q'_x, Q'_y	-5.68, -5.97	
v 10		Total RF voltage	6.287	MV	Slip factor	-0.291186	
× 12		Proton bunch charge	2e11	e	Synchrotron tune Q_s	1/13	
	-					一 犬 Ear	miloh

Initial space charge tuneshift $\Delta Q_{\sf SC} = -rac{N_p r_p}{4\pi\epsilon eta_p^2 \gamma_p^3} rac{C}{\sqrt{2\pi}\sigma_s} R pprox -1.25$

Emittance growth over 1000 turns

X RMS emittance growth

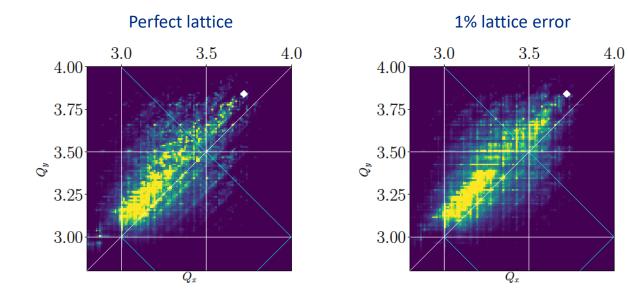


Emittance growth

Key	quad error	RMS $(\epsilon - \epsilon_0)/\epsilon_0$
E	3%	3.40
D	2%	2.0
C	1%	0.90
В	0.5%	0.39
Α	0%	0.13

Losses over 1000 turns

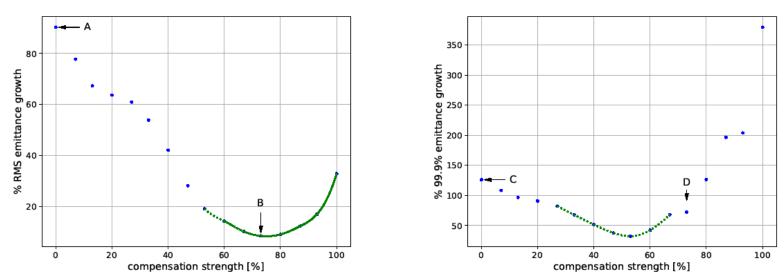
4σ cum. loss


losses

Key	quad error	$(\Delta N_p/N_p)_{4\sigma}$
Е	3%	0.48
D	2%	0.44
С	1%	0.20
В	0.5%	0.07
А	0%	0.007

The tune footprint does not obviously show the difference

Tune spectral densities

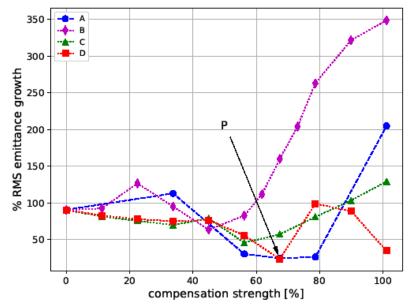


Enable perfect compensators

RMS emittance growth

Electron lens compensators 1/cell (111º phase advance)

At 73% compensation strength, RMS emittance growth reduced $91\% \rightarrow 8.5\%$. 99.9% emittance growth not significantly improved.

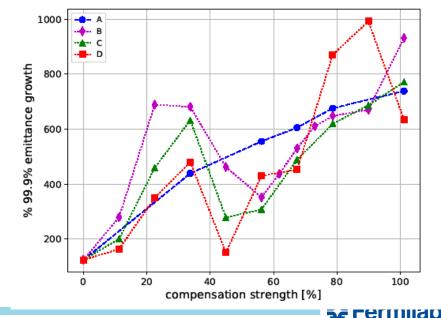


99.9% emittance growth

‡ Fermilab

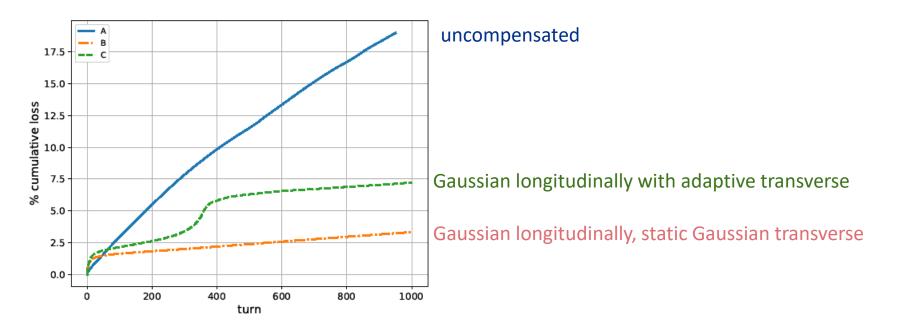
Enable Gaussian compensators

	Transverse		
Longitudinal	Static Gaussian	Gaussian tracks p -bunch	
static (DC)	В	С	
Gaussian	А	D	

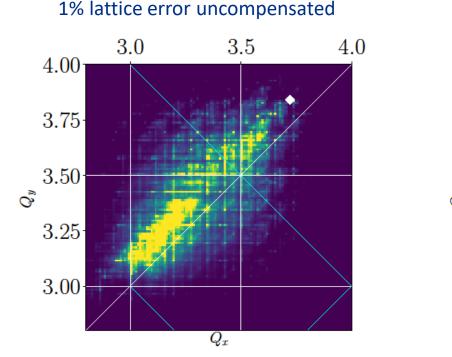


X RMS emittance growth

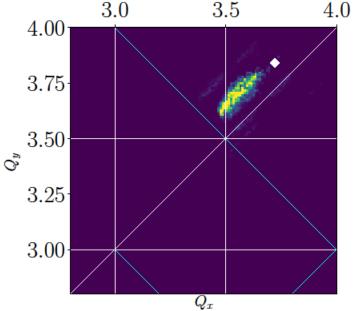
Best curve if A (blue), static transverse, pulsed longitudinally. No amount of compensation improves the halo.


Best compensation reduces x emittance growth from 91% \rightarrow 24%

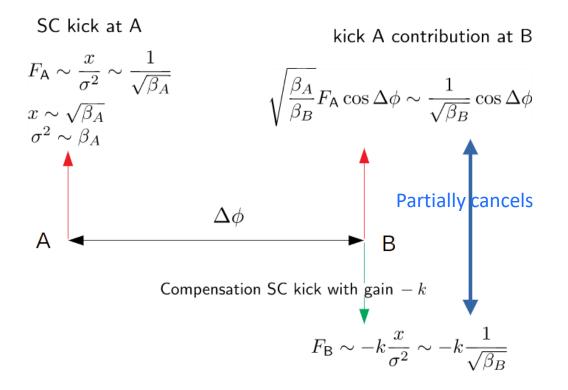
X 99.9% emittance growth


Improved losses at 4 sigma aperture

Cum loss over 1000 turns

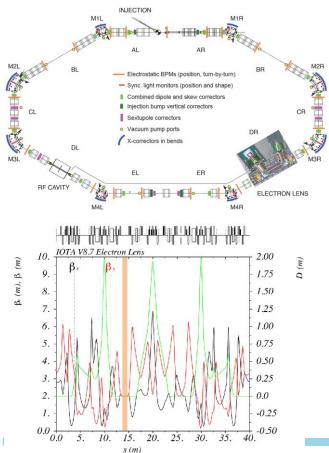


Tune footprint is compressed with working compensation


Best compensation case A

How does remote compensation work?

 $F_{\rm SC} \sim \frac{x}{\sigma^2}$ for $x < 0.4\sigma$



Compensation works for core particles when the phase advance is not too large.

Simulations suggest compensation works 60^o forwards and backwards from the compensator or one unit of phase advance.

Implications for IOTA electron lens experiments

- It will be interesting to see if the well controlled beam optics in IOTA suppress space charge effects.
- Run unbunched beam.
- Compensation can occur over one unit of phase advance before and after the compensating element.
- Beta function is 2 at the lens so one unit of PA is 2m.
 Plan to try to compensate 4m / 40m or 10% or the total tune spread.
- Electron lenses in IOTA hugely benefit from low beta. At electron energy of 3 KeV, you only need 0.5 A-m of electron lens coverage to compensate the entire ring at 8 mA (if it were covered in lenses.)
- If you're expecting a tune shift of 0.5, suggest increasing tune above 5.3.
- If possible, increase beta function at the lens to lower phase advance rate of change.

‡Fermilab

14 2021-10-29 Eric G. Stern | 2021 IOTA/FAST Collaboration Meeting

Conclusions

- We performed detailed simulations of extreme space charge shift beams with electron lenses.
- In a perfectly symmetric lattice simulation with no errors, space charge is not as big of a problem as it is in actual operational conditions. We must introduce lattice errors to induce emittance growth that can be compensated.
- Sufficient number of electron lenses positioned at close phase advance separations can compensate for a large fraction of space charge induced emittance growth and losses.
- The most important part of the lens is to match the lens strength to the longitudinal profile of the beam bunch.
- The lens strength should be set to compensate 65-70% of the space charge within one unit of phase advance of its position.
- It should be achievable to observe electron lens effects in IOTA.

I thank my collaborators A. Burov, V. Shiltsev, and late Yu. Alexahin.

Acknowledgements

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Synergia development has been supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program.

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

‡ Fermilab

Content Slide [22pt Bold]

Bullet points are optional. If preferred, only first level bullets can be used or bullets can be set to "NONE." [18pt Regular]

- First level bullet [18pt Regular]
 - Second level bullet [16pt Regular]
 - Third level bullet [15pt Regular]
 - Fourth level bullet [14pt Regular]
 - Fifth level bullet [14pt Regular]

Comparison Slide [22pt Bold]

- First level bullet [18pt Reg]
 - Second level bullet [16pt]
 - Third level bullet [15pt]
 - Fourth level bullet [14pt]
 - Fifth level bullet [14pt]

- First level bullet [18pt Reg]
 - Second level bullet [16pt]
 - Third level bullet [15pt]
 - Fourth level bullet [14pt]
 - Fifth level bullet [14pt]

Click to add caption text [13pt Bold]

Click to add caption text [13pt Bold]

Content and Caption Slide [22pt Bold]

Click to add caption text [13pt Bold]

- First level bullet [18pt Reg]
 - Second level bullet [16pt]
 - Third level bullet [15pt]
 - Fourth level bullet [14pt]
 - Fifth level bullet [14pt]

Picture and Caption Slide [22pt Bold]

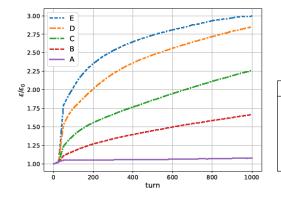
Click to add caption text [13pt Bold]

20 2021-10-28 Presenter | Presentation Title or Meeting Title

Collaborations / Partnerships / Members [22pt Bold]

NORTHWESTERN

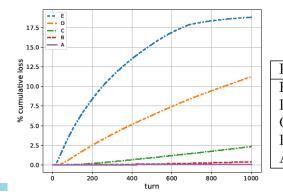

UNIVERSITY


Emittance growth and losses over 1000 turns

---- E --- D 4.0 --- C --- B 3.5 — A 3.0 0*3/3* 2.5 2.0 1.5 1.0 200 400 600 800 1000 n turn 4σ cum. loss 50 -- E --- D — · c — В 40 -____ A % cumulative loss 0 00 10 n 200 400 600 800 1000 turn

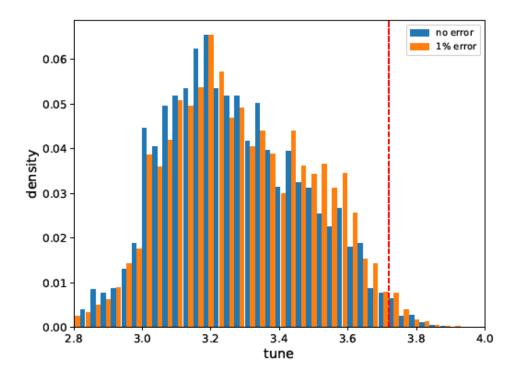
X RMS emittance growth

4.5

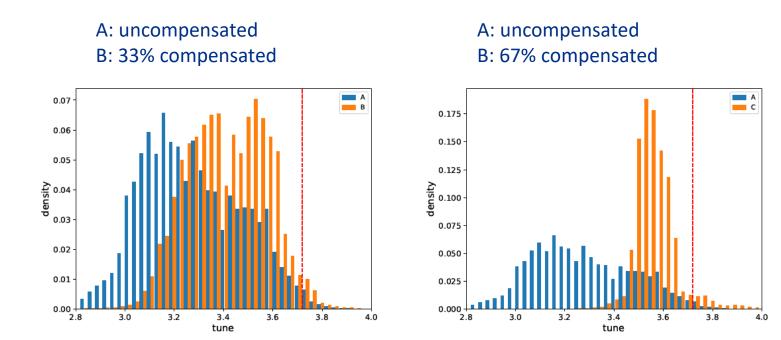

X 99.9% emittance growth

Emittance growth

Key	quad error	RMS $(\epsilon - \epsilon_0)/\epsilon_0$	$99.9\%~(\epsilon-\epsilon_0)/\epsilon_0$
\mathbf{E}	3%	3.40	1.99
D	2%	2.08	1.85
С	1%	0.90	1.26
В	0.5%	0.39	0.67
Α	0%	0.13	0.08


5σ cum. loss

losses				
Key	quad error	$(\Delta N_p/N_p)_{4\sigma}$	$(\Delta N_p/N_p)_{5\sigma}$	
E	3%	0.48	0.19	
D	2%	0.44	0.11	
С	1%	0.20	0.024	
В	0.5%	0.07	0.004	
A	0%	0.007	0.0004	


🛛 🛟 Fermilab

Tune densities with and without lattice error

Non-monotonic compensation

‡ Fermilab

Presenter | Presentation Title or Meeting Title

25

2021-10-29