

Atmospheric Tau Neutrino Appearance

Adam Aurisano

University of Cincinnati

27 August 2021

Why Tau Neutrinos?

S. Parke and M. Ross-Longeran, PRD 93, 1103009 (2016)

- Despite increasing precision of PMNS mixing angles, all of this knowledge depends on assumption of unitarity
- Almost all disappearing muon neutrinos oscillate into tau neutrinos, but only 10 high-purity, oscillated, tau-neutrino candidates have ever been observed
- DUNE is well positioned to dramatically improve this situation

Selection

- Tau neutrinos are difficult to select
 - Kinematically forbidden at typically beam energy
 - Cross section is suppressed at higher energies
 - Tau-leptons have many decay modes which mimic either v_e -CC, v_{μ} -CC, or NC events
- Truth level studies of atmospheric tau neutrinos suggest that tau neutrinos with hadronically decaying tau-leptons could be isolated with high purity
 - J. Conrad, A. de Gouvea, S. Shalgar, and J. Spitz, PRD 82, 093012 (2010)
 - Assumes LArTPC can achieve near perfect electron/photon and muon/pion discriminatior
 - Relatively simple kinematic cuts on charged pions achieves good separation between tau neutrinos and NCs
- Assume:
 - 37% flat signal efficiency
 - 0.5% NC background efficiency

τ^- Decay Mode	Branching Ratio
$\mu^- ar{ u}_\mu u_ au$	17.4%
$e^- \bar{\nu}_e \nu_{\tau}$	17.8%
$\pi^- u_ au$	10.8%
$\pi^-\pi^0 u_ au$	25.5%
$\pi^{-}2\pi^{0}\nu_{\tau}$	9.3%
$2\pi^-\pi^0 u_ au$	9.3%
$2\pi^-\pi^+\pi^0\nu_\tau$	4.6%

Adam Aurisano

Atmospheric Oscillations

- Generate mu → tau and e → tau oscillograms using oscillation calculator: https://github.com/joaoabcoelho/OscProb
- Uses a 15 layer PREM model

 $\sin^2 \theta_{12} = 0.310$, $\sin^2 \theta_{13} = 0.02240$, $\sin^2 \theta_{23} = 0.582$, $\delta_{CP} = 217^\circ = -2.50$ rad,

$$\Delta m_{21}^2 = 7.39 \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 = +2.525 \times 10^{-3} \text{ eV}^2.$$

Atmospheric Fluxes

- Use Honda fluxes from http://www.icrr.u-toky o.ac.jp/~mhonda/nflx2 014/index.html
- Predicted number of tau neutrino events from flux*xsec*oscWeights

In 350 kton-years, before selection we expect:

350 v_{τ} -CC 31020 v_{e} -CC 37500 v_{μ} -CC 33040 NC

True Atmospheric Spectra, No Selection

True Atmospheric Spectra, Optimistic Selection

Adam Aurisano

Energy and Angular Resolution

- Performed MC study of energy and angular resolution using Honda fluxes + GENIE + calorimetric energy reconstruction
- Calorimetric energy resolution
 - ~17% resolution for both $\nu_t\text{-}CC$ and NC
 - On average, 47% of $\nu_{\tau}\text{-}CC$ energy is visible, while 54% of NC energy is visible
- θ_{zen} resolution
 - ~5° for $\nu_{\tau}\text{-}CC$ and ~7° for NC
- Generate migration matrices for signal and background, also accounting for bias in reconstructed energy, which are different for signal and background
 - Use truncated Gaussian for energy throws and von Mises-Fisher for $cos\theta_{zen}$

Reconstructed Atmospheric Spectra

Atmospheric Parameters

Assume a 25% normalization uncertainty N.B. The atmospheric fit does not profile over θ_{13} Beam contours from de Gouvea, Kelly, Stenico, and Pasquini, Phys. Rev. D 100, 016004 (2019)

Adam Aurisano

Combined Beam and Atmospheric Sample

- Used likelihood calculator from authors of beam contour paper to create a joint surface
- Assume 25% normalization systematics for atmospherics, FHC beam, and RHC beam
 - Treat as three uncorrelated errors

Conclusions

- DUNE is uniquely capable of providing a high-purity, high-statistics sample of atmospheric tau neutrinos
- Tau neutrinos are challenging to select and reconstruct, but they provide an independent check of the three flavor model
- A 2-dimensional fit to the atmospheric prediction improves constraints on the atmospheric parameters
- Combinations with a sample of beam tau neutrinos, especially a potential high energy sample, may provide additional constraints on tau neutrino cross sections