Muon g - 2 — theory

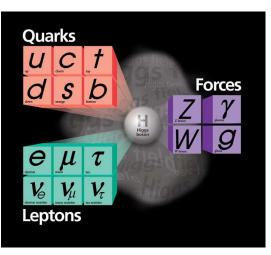
Dominik Stöckinger, TU Dresden

Big Questions in . . . Muon g - 2 — Colloquium 17th September 2021

BSM-Collaborators: Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, Hyejung Stöckinger-Kim

• Brief motivation/definitions

- SM situation
- BSM: general remarks, examples of models, relations to big questions

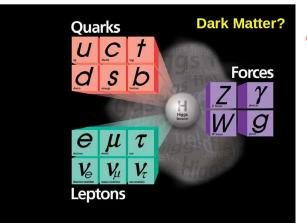

Frontiers

- High-energy LHC, future e^+e^- , muon colliders ...
- Precision, rare, neutrino g 2, flavor physics, dark sectors ...
- Cosmic dark matter searches, dark energy, ...

• . . .

Broad programme to investigate open questions — how does g - 2 fit in?

Standard Model of particle physics (est. 1967...1973))

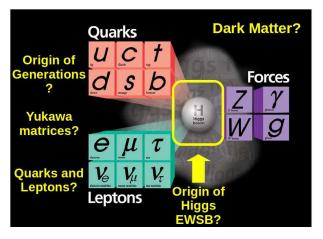

SM very well confirmed!

- All known interactions
 (≠ gravity)
- relativistic QFT
 → renormalizable
- gauge invariance
 specific interactions
- spontaneous EWSB
 → Higgs

Open questions!

 a_{μ} sensitive to all particles and forces via quantum fluctuations!

Open questions require Beyond the Standard Model (BSM) physics

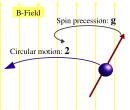

Open questions!

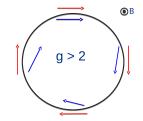
 experimental clues needed! → g - 2!

not easy to explain!

 relevant and deep questions may be related to g - 2

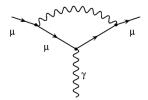
Open questions require Beyond the Standard Model (BSM) physics




Open questions!

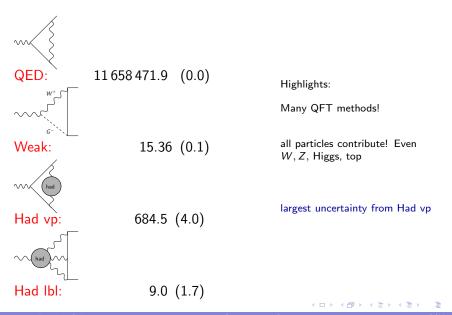
 experimental clues needed! → g - 2!

not easy to explain!


 relevant and deep questions may be related to g - 2 Muon magnetic moment: definition of $g = 2(1 + a_n)$

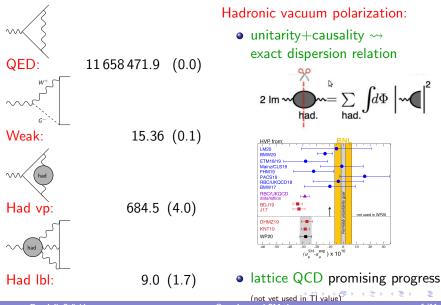
$$\omega_{a} = \omega_{s} - \omega_{c} = -\frac{a_{\mu}}{m_{\mu}}B$$

Quantum field theory:

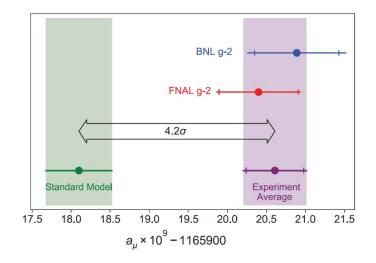

$$\mathcal{L}_{eff} = \frac{Qe}{2} \left(c \bar{\psi}_R \sigma_{\mu\nu} \psi_L + c^* \bar{\psi}_L \sigma_{\mu\nu} \psi_R \right) F^{\mu\nu}$$

 $a_{\mu} = -2m_{\mu}\operatorname{Re}(c)$

 $d_{\mu} = Qe \operatorname{Im}(c)$


Theory Initiative prediction $a_{\mu}^{\rm SM} = (11\,659\,181.0~(4.3)~)~[10^{-10}]$

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort


Theory Initiative prediction $a_{\mu}^{\rm SM} = (11\,659\,181.0~(4.3))~[10^{-10}]$

since 2017, 6 workshops, White Paper (2020), 132 authors, ongoing effort

Overview and SM theory

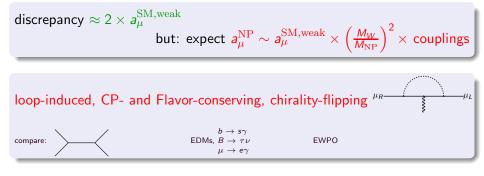
Finally: Fermilab Run 1 versus Theory Initiative SM value

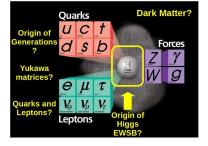
Discrepancy — Two important general points

SM prediction too low by $pprox (25\pm 6) imes 10^{-10}$

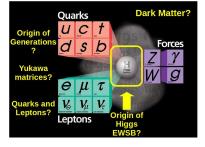
Questions: Which models can(not) explain it?

Discrepancy — Two important general points

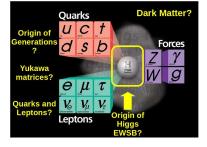

SM prediction too low by pprox (25 \pm 6) imes 10⁻¹⁰


$$\begin{array}{l} \text{discrepancy} \approx 2 \times a_{\mu}^{\text{SM,weak}} \\ \text{but: expect } a_{\mu}^{\text{NP}} \sim a_{\mu}^{\text{SM,weak}} \times \left(\frac{M_{W}}{M_{\text{NP}}}\right)^{2} \times \text{ couplings} \end{array}$$

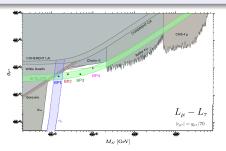
A B A A B A

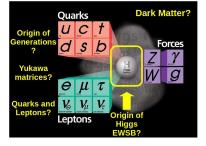

Discrepancy — Two important general points

SM prediction too low by
$$pprox$$
 (25 \pm 6) $imes$ 10⁻¹⁰



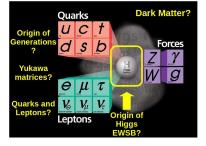
- (I) (I


Dark Matter, (light?) dark sectors? Hard to see in detectors but could couple to muon \rightsquigarrow large effects possible!


Dominik Stöckinger

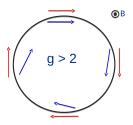
Dark Matter, (light?) dark sectors? Hard to see in detectors but could couple to muon \rightsquigarrow large effects possible!

- Dark Photon, Z', $U(1)_{L_{\mu}-L_{\tau}}$
- many low-E constraints
- also SUSY, heavy dark matter models . . . (LHC, DMDD!)

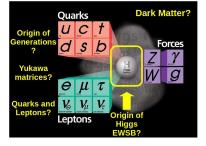


Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

Technically: QFT operators for m_{μ} and a_{μ} are chirality flipping and break gauge invariance:

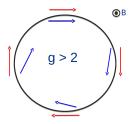

 $\frac{m_{\mu}\bar{\psi}_{L}\psi_{R}}{\frac{a_{\mu}}{m_{\mu}}\bar{\psi}_{L}\sigma_{\mu\nu}\psi_{R}F^{\mu\nu}}$

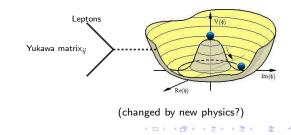
Dominik Stöckinger



Window to the muon mass generation mechanism (Higgs/Yukawa sectors) |

(continuous spin rotation requires rest mass!)




(<)</pre>

Window to the muon mass generation mechanism (Higgs/Yukawa sectors)

(continuous spin rotation requires rest mass!)

Examples with enhanced chirality flips...

$\mathsf{SUSY}: \neq \mathsf{MSugra}$

- Higgs, Yukawa, Higgsinos, Smuons...
- Dark Matter
- Constrained by DM, LHC, CLFV...

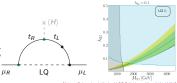
Two-Higgs doublet model: \neq Type I, II, Y

- Higgs, Yukawa
- Constrained by LHC, τ -, B-physics, CLFV

Lepto-quarks S_1 , R_2 , vector-like leptons

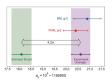
- New Yukawa-like couplings (µ-top-LQ)
- New flavour structures
- Constrained by LHC, flavour, finetuning

UR


 $H_{1,'}$

μR

 $\times \langle H_1 \rangle$



 μ_{I}

[Athron, Balazs, Jacob, Kotlarski, DS, Stöckinger-Kim, 2104.03691]

Conclusions

- SM prediction for g 2:
 - All known particles relevant (and all QFT tricks)
 - Theory Initiative: worldwide (ongoing!) effort, agreed & conservative value

• BSM contributions to g - 2:

- large effect needed
- Connections to deep questions
- many models . . . and constraints
- often chiral enhancements, new flavor structures
- Exp. tests:

Higgs couplings, B-physics, CLFV,

- EDM, light-particle searches, $e^+e^-/muon$ collider
- not easy to combine with "B-anomalies"

Many opportunities!

1/11