

Big Questions in Muon g-2: Experimental Perspective

Brendan Kiburg, Fermi National Accelerator Laboratory Snowmass Early Career Colloquium Series 17 September 2021

Outline

- Muons probe the universe
- Status 2020
- Theory Calculations
 - Focus on the experimental inputs
- Fermilab Muon g-2
 - Experimental Recap
 - Status and Outlook
- Future Experimental Efforts

Big Question: What is responsible for the Muon g-2 discrepancy?

Our favorite probe: The muon

• Fortuitous lifetime = 2.2 μ s

- Spin 1/2 particle
- Encodes information about spin in its decay

$$\vec{\mu} = \bigotimes_{m=1}^{q} \vec{S}$$

- This g-factor is the "g" in "g-2"
- g= 2 + contributions from virtual particles

Magnetic Field

Motivation: Status of the muon anomaly before Fermilab Experiment

Theory WP: <u>https://doi.org/10.1016/i.physrep.2020.07.006</u>

Experimental Clues

Big Question: Where can future experimental efforts help explain the muon g-2 discrepancy?

g-2 Theory g-2 Experiment Other Experiments

5 Sep 17 2021 B. Kiburg I Big Questions in Muon g-2: Experimental View

Dispersive Theory Calculation is Driven by Experimental Input

🚰 Fermilab

Dispersive Theory Calculation is Driven by Experimental Input

Many detailed measurements lead to precise theory calculation

Theory WP: https://doi.org/10.1016/j.physrep.2020.07.006

New Lattice Calculations are in tension with Dispersive Calculations

- Most results statistically limited
- First precise LQCD result in (BMW20) in tension with dispersive result
- Important to see how story evolves
 - Will other lattice calculations look similar with improved precision?
 - Will a particular region or window show tension between the various groups?
 - Could the lattice results end up shifting the focus to understanding the discrepancy between lattice and e+/edata?

Additional Experimental handle being pursued: MUonE at CERN

A novel approach to determine the leading hadronic contribution via a very precise measurement of the shape of the differential cross section of μe elastic scattering

$$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int_0^1 dx (1-x) \Delta \alpha_{had}[t(x)]$$

- Be scattering target
- Tracking via silicon strip detectors
- Status
 - Scattering test beam studies 2017-2018
 - Test run in 2021/2022
- Goal: 3 years of running $\rightarrow 0.3\%$ precision on a_{μ}^{HLO}

E. = 13

A beam of 160 GeV muons allows to cover the whole a_{μ}^{HLO} .

 Correlation between muon and electron angles allows to select elastic events and reject background (e⁺e⁻ pair production).

 Boosted kinematics: θ_{μ} < 5 mrad, θ_{e} < 32 mrad.

G. Venanzoni, TI Meeting, KEK, 29 Jun 2021

Electron scattering angle (mra

Experimental Clues

Big Question: Where can future experimental efforts help explain the muon g-2 discrepancy?

g-2 Theory g-2 Experiment Other Experiments

10 Sep 17 2021 B. Kiburg I Big Questions in Muon g-2: Experimental View

Muon g-2 basics in a storage ring

$$\omega_a = \frac{eB}{m} a_{\mu}$$

A precision measurement of the muon's anomalous spin-precession frequency in a well-measured magnetic field will tell us how muons see the universe.

What are the main experimental steps to get a_{μ} ?

$$\omega_a = \frac{eB}{m} a_{\mu}$$

- 1. Inject and store polarized muons
- 2. Measure the decay electrons to determine the muons' properties
- 3. Map and track the magnetic field

1. Inject and store polarized muons

1. Cyclotron frequency:

$$\omega_{c} = \frac{e}{m\gamma} B$$

2. Spin precession frequency

$$\omega_s = \frac{e}{m\gamma} B\left(1 + \gamma \frac{g-2}{2}\right)$$

$$\omega_s - \omega_c \equiv \omega_a = \frac{eB}{m} \frac{g-2}{2} = \frac{eB}{m} a_\mu$$

2. Measure decay electrons to determine the muons' properties

sample number

2. Measure decay electrons to determine the muons' properties

15 Sep 17 2021 B. Kiburg I Big Questions in Muon g-2: Experimental View

3. Map and track the magnetic field

- Use Nuclear Magnetic Resonance (NMR)
 - Determine the B-field in terms of the proton precession frequency ω_p

NMR trolley **maps** field every 3 days

378 fixed probes **monitor** continuously

Trolley cross-**calibrated** to absolute probes

Trolley Magnetic Field Maps

- Create a highly uniform field
- Trolley has 17 probes, produces map at 8000 azimuthal locations
- Determines strength of the field vs space

We relate our observables to the quantities that determine a_{μ}

Building confidence in experimental result

- Run 1 Result Statistically limited
- Improvements implemented to reduce uncertainties to 100 ppb syst, 100 ppb stat
- Technique same as BNL, but most systems are new (different), e.g. trackers, calos, field probes, electronics, etc..

Quantity	Correction terms (ppb)	Uncertainty (ppb)
$\overline{\omega_a^m}$ (statistical)		434
ω_a^m (systematic)	•••	56
C_{e}	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
B_k	-27	37
B_q	-17	92
$\mu_{p}'(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_e	•••	22
$g_e/2$	•••	0
Total systematic		157
Total fundamental factors	•••	25
Totals	544	(462)

35 Fermilab

- Additional long Run 5 coming up
- Where will the experimental result settle?

🔁 Fermilab

Important to push this precision

Experimental Clues

Big Question: Where can future experimental efforts help explain the muon g-2 discrepancy?

g-2 Theory g-2 Experiment Other Experiments

20 Sep 17 2021 B. Kiburg I Big Questions in Muon g-2: Experimental View

What is next?

Big Question:

What if the discrepancy is real? Where could we look?

A flurry of activity in the last 5 months to attempt to answer those questions

Anomalies popping up in the flavor sector

LHCB presented a recent update with the Run1 and Run 2 LHC data this spring:

 R_K probes the ratio of B-meson decays to muons vs electrons:

 $R_{K} = BR(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}) / BR(B^{+} \rightarrow K^{+} e^{+} e^{-})$

- Hints that lepton flavor universality is violated: $R_K = 0.846^{+0.044}_{-0.041}$, 3.1 σ
- Several other anomalies at the 2+ σ level
- Challenging for theorists to construct models that accommodate all anomalies and g-2
- But perhaps NP sees muons differently

https://cerncourier.com/a/new-data-strengthens-rk-flavour-anomaly/

Searches for Muonphilic dark bosons

- Light (sub-GeV) new boson that couples preferentially to muons
 - Would need significant coupling strength to explain muon g-2 discrepancy
 - Would be produced with large production rates in muon beam experiments

- Experimental design depends on manner in which new particle decays
 - Invisibly to our detectors
 - Decaying to detectable SM particles

Diagrams from talks by Y. Kahn, B. Batell: https://indico.fnal.gov/event/48469/contributions /214613/attachments/143550/181654/M3.pdf

Technique to identify Missing Momentum processes

- Track individual muons
- Scatter on target, new muonphilic particle takes away momentum
- Track the momentum of the outgoing muon
- Ensure "missing momentum" is not hiding in SM processes / detector inefficiencies

NA64 @ CERN gearing up for LHC Run 3, 160 GeV M³ (Muon Missing Momentum) proposal @ FNAL, few-10s GeV

Diagrams from talks by N. Tran, C.M. Suarez https://indico.fnal.gov/event/48936

Beam-dump proposals

- If the new particle couples preferentially to muons (and not quarks/electrons) and decays visibly
 - Can also account for muon g-2 anomaly
 - Can manifest as a displaced vertex
- Fully stop low-energy muon beam in target
 - Look for a displaced vertex / anomalous energy deposit in adjacent detector
- Or, produce particle in target with higher-energy muon beam
 - Displaced vertex occurs beyond detector
 - Observe large missing momentum

25 Sep 17 2021 B. Kiburg I Big Questions in Muon g-2: Experimental View

Diagrams from Y. Zhong: arXiv:1701.07437

Fermilab

Ongoing and Future Efforts

- Muon g-2
 - Improve precision of existing FNAL Muon g-2 data
 - JPARC g-2 cold μ^+ beam, tracking detector
 - Direct DM search in g-2 data by analyzing (long) time-variations in g-2 signal
- Lepton Universality
 - b physics experiments @ colliders to improve precision in rates and properties of b decays
 - Pion Decay proposal Direct study of ratio of pion decay to muons vs electrons, extremely
 precisely calculated
- Charged Lepton Flavor Violation Program (CLFV)
 - mu3e/Meg-II@PSI, mu2e @FNAL, COMET @ JPARC
 - mu2e-II could probe the operators driving muon to electron conversion if found
 - ENIGMA: nExt geNeration experIments with hiGh intensity Muon beAms a proposal to build a CLFV program investigating/measuring multiple channels

Ongoing and Future Efforts

- Fixed-Target Dark Matter Searches
 - NA64 @ CERN, M³ @ FNAL, DarkQuest and LongQuest
- HL-LHC
 - Broad program that extends existing investment
 - Extends reach of SUSY searches into allowed regions that could also explain g-2 discrepancy
- Muon Collider
 - Lepton interactions, significant physics reach at "modest" energies
 - Needs efficient creation, collection, acceleration of muons
 - Proposed "no-lose theorem" to discover NP if the muon g-2 discrepancy is real (see: https://arxiv.org/abs/2101.10334)

Snowmass Process

Big Question: Where do *you* think the solution to the muon g-2 discrepancy is lurking?

- Snowmass 2022 is a great opportunity to present physics arguments and develop community consensus to pursue interesting ideas
- Early-career researches are pushing many of these efforts and defining the direction of the field

Summary and Outlook

- Theory needs experimental input to improve precision
 - e+/e- input to dispersive calculation
 - Lattice QCD comparisons
 - MUonE scattering effort
- Experiment
 - First result with 6% total data confirms BNL
 - 10x data collected, being analyzed
- Future Efforts
 - Maximize output from existing facilities
 - Is flavor trying to tell us something?
 - Can we utilize fixed-target muon experiments?
 - What big machine would help?

