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Few words about me

® 2004-08: BSci Physics at the University of Cyprus

@ 2008-2012: PhD in Particle/Accelerator Physics at
Imperial College London; Full scholarship (STFC);

PhinisheD ~3 weeks ago
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Experiments I've worked on (1/5)

1. (supervisor: Assistant Prof.
Fotios Ptochos):

"Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross
section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected
at CDF detector
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2a) 4D emittance reduction
using Ionisation Cooling

o (we'll see the motivation later), ionisation cooling can decrease muon
emittance (before muons decay):

@ muons pass through absorbers where their momentum decreases in every
direction

@ then muons pass through RF cavities where the lost energy is restored only
longitudinally

@ There is a thought of replacing the reference cooling lattice cause of the high B
it has at the RF position (which can lead to RF breakdown)

@ I proposed and designed a new cooling channel for the Neutrino Factory that
achieves a significantly lower B at the RF position than the reference lattice
while keeping the positive aspects (more in a few slides!!)
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2b) Muon Collider (MC):

6D cooling channel

@ A lepton collider with sufficient energy and luminosity could compliment

and extend the reach of LHC

@ In order to achieve the desired luminosity (L~103°-10%*cm=2s), 6D cooling is

required (E, 1, x, X', v, ¥)
@ I designed a lattice that uses:

: | | . | medium-E
@ dipoles (introduce dispersion): low-E particles

follow a different path than high-E particles

® wedge absorbers (introduce position-EnergyLoss correla’rlon) high-E
particles go through more absorber material and lose more energy

than low-E particles->

Pt

@ RF cavities: the energy lost in the absorbers is
restored only in the longitudinal direction->

o GEANT4 based frameworks, ROOT, C++ (and other programming languages)
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MICE: Muon Ionisation Cooling Experiment
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@ MICE (Muon Ionisation Cooling Experiment) is the first \
experiment aiming to demonstrate muon emittance redlgti :
using ionisation cooling

Based at RAL (Rutherford Appleton Laboratory),
A Ti target dips into the ISIS proton beam (f=O0.
are produced->decay to muons->muons undergo
cooling
@ The Ti target melted due to signal malfunction

Q O

® There was a thought of using a
thermocouple that could warn for a
potential temperature rise of target

@ I performed calculations to see if a
thermocouple was sensitive enough to
detect a temperature change in a small time

@ After the target was fixed I participated in
beamline commissioning shifts at RAL

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
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...........

® MICE (Muon Ionisation Cooling Experiment) is the ﬁrs’r(
experiment aiming to demonstrate muon emittance redietior
using ionisation cooling

Based at RAL (Rutherford Appleton Laboratory),
A Ti target dips into the ISIS proton beam (f=O0.
are produced->decay to muons->muons undergo
cooling

@ The Ti target melted due to signal malfunctic

Q O

® There was a thought of using a
thermocouple that could warn for a
potential temperature rise of target

@ I performed calculations to see if a
thermocouple was sensitive enough to
detect a temperature change in a small time

@ After the target was fixed I participated in
beamline commissioning shifts at RAL

Androula Alekou, Imperial College London, androula.alekouO8WARP CM18/HiLumi Meeti_nbég' ,.
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...........

® MICE (Muon Ionisation Cooling Experiment) is the ﬁrs’r(
experiment aiming to demonstrate muon emittance redietior
using ionisation cooling

Based at RAL (Rutherford Appleton Laboratory),
A Ti target dips into the ISIS proton beam (f=O0.
are produced->decay to muons->muons undergo
cooling

@ The Ti target melted due to signal malfunctic

Q O

® There was a thought of using a
thermocouple that could warn for a
potential temperature rise of target

@ I performed calculations to see if a
thermocouple was sensitive enough to
detect a temperature change in a small time

@ After the target was fixed I participated in
beamline commissioning shifts at RAL

o Tools/skills: C++, ROOT, team-work

Androula Alekou, Imperial College London, androula.alekouO8WARP CM18/HiLumi Meeti_nbég' ,.
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1. (supervisor: Assistant Prof.
Fotios Ptochos):

"Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross

section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected
at CDF detector

2. (supervisor: Dr. Jaroslaw Pasternak, co-supervisor: Prof. Ken Long):
a. Neutrino Factory 4D Ionisation Cooling Lattices (main part of my talk)

. Muon Collider: designed a 6D cooling channel

. MICE at RAL : worked on the replacement target system, beamline
commissioning shifts

. COMET/PRISM : designed a muon decelerator

MICE: Muon Ionisation Cooling Experiment
RAL: Rutherford Appleton Laboratory
COMET/PRISM: Coherent Muon to Electron Transition/Phase Rotated Intense Slow Muon source
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2d) COMET/PRISM

@ These experiments want to study cLFV (charged Lepton Flavour
Violation) by observing p-->e~ conversion

@ (Protons->Target->pions->muons)
@ They need low energy muons->so they need a muon decelerator
@ There is pion contamination->so they need material to stop pions

@ I designed a muon decelerator, using RF cavities set at 0° phase,
and absorbers to reduce pion contamination (decreased muon
energy by factor of 1.6 while achieving 70% muon transmission:

)
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@ There is pion contamination->so they need material to stop pions

@ I designed a muon decelerator, using RF cavities set at 0° phase,
and absorbers to reduce pion contamination (decreased muon
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)

o GEANT4 based frameworks, C++, ROOT
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1. (supervisor: Assistant Prof.
Fotios Ptochos):

"Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross
section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected
at CDF detector
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. Muon Collider: designed a 6D cooling channel
. MICE at RAL : worked on the replacement target system, beamline
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COMET/PRISM: Coherent Muon to Electron Transition/Phase Rotated Intense Slow Muon source
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Experiments I've worked on (5/5)

1. (supervisor: Assistant Prof.
Fotios Ptochos):

"Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross
section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected
at CDF detector

2. (supervisor: Dr. Jaroslaw Pasternak, co-supervisor: Prof. Ken Long):
a. Neutrino Factory 4D Ionisation Cooling Lattices (main part of my talk)

. Muon Collider: designed a 6D cooling channel

. MICE at RAL : worked on the replacement target system, beamline
commissioning shifts

. COMET/PRISM : designed a muon decelerator

. Mu2e at PSI : 1 month->detector calibrations, daily shifts

MICE: Muon Ionisation Cooling Experiment

RAL: Rutherford Appleton Laboratory

COMET/PRISM: Coherent Muon to Electron Transition/Phase Rotated Intense Slow Muon source
MuZe: Muon-to-electron conversion experiment

Paul Scherrer Institute
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2e) Mu2e

@ I participated in Mu2e test run, at
PSI, Switzerland
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2e) Mu2e

@ I participated in Mu2e test run, at
PSI, Switzerland

@ Mu2e wants to study cLFV (charged
Lepton Flavour Violation) by .
observing U~->e” conversion _@ ‘

@ I participated in detector calibration
using hardware, controls and
electronics adjustments informed by
data analysis using radioactive
sources.
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2e) Mu2e

@ I participated in Mu2e test run, at
PSI, Switzerland

@ Mu2e wants to study cLFV (charged
Lepton Flavour Violation) by
observing U~->e” conversion

@ I participated in detector calibration
using hardware, controls and \_
electronics adjustments informed by -
data analysis using radioactive
sources.
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Main work-layout

@ Introduction

@ Motivation

@ My idea & contribution
@ Results

® Conclusions
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Introduction

@ Neutrino Factory will study neutrino oscillations and measure the
mixing parameters in by producing the
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Introduction

@ Neutrino Factory will study neutrino oscillations and measure the
mixing parameters in by producing the

@ Neutrinos will be produced from stored muon decays:

o ..muons are produced occupying a large transverse phase space...

@ ..So to transport the muons efficiently to downstream accelerator
systems, the muon beam emittance needs to decrease
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Introduction

@ Neutrino Factory will study neutrino oscillations and measure the
mixing parameters in by producing the

@ Neutrinos will be produced from stored muon decays:

o ..muons are produced occupying a large transverse phase space...

@ ..So to transport the muons efficiently to downstream accelerator
systzins, the muon beam emittance needs to decrease

@  ..muons decay fast! So traditional cooling techniques cant work!

@ The only viable muon cooling technique is ionisation cooling
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@ Ionisation cooling:
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Inftfroduction

@ Ionisation cooling:

@ Muons pass through
where their momentum 3 Pl
decreases in every direction B
Py
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Inftfroduction

@ Ionisation cooling:

@ Muons pass through
where their momentum o
decreases in every direction P

@ Then they pass through
cavities, where their energy is o

restored, but only in the
longitudinal direction /
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Inftfroduction

@ Ionisation cooling:

@ Muons pass through
where their momentum o
decreases in every direction P

@ Then they pass through
cavities, where their energy is o

restored, but only in the
longitudinal direction /

@ So the transverse phase-space (4D)
of the muon beam is reduced!

before cooling ¢

after cooling 2 g
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Motivation (1/3)

@ Reference ionisation cooling channel of the Neutrino
Factory, FSIIA : : RE

FSIIA=Feasibility Study IIA
@ Performs well with respect fo transmission and cooling dynamics,

but...
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Motivation (2/3)

@ ..FSIIA has large B at the
position of the RF cavities...

0. 02 03 04 05 06
R (m)
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Motivation (2/3)

@ ..FSIIA has large B at the
position of the RF cavities...

® ..and recent studies show that
high external B at RF cavities 10203 04 01'15@5)'6
can lead to RF breakdown
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Motivation (2/3)

@ ..FSIIA has large B at the
position of the RF cavities...

@ ..and recent studies show that
high external B at RF cavities 0.1 02 03 04 01'15@5)'6
can lead to RF breakdown

Maximal achievable surface electric field An al-l-erna.l-ive COOling Ia.l..l.ice ShOUId ’
+ ot L be found that will not only decrease '?

—4— Mo button

DR significantly the B at the RF posnﬂon
b but that will also achieve a

Surface electric field (MV/m)

. comparable transmission and coolmg
| performance to FSIIA

Magnetic field (T)
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Motivation (3/3)

@ How do decrease B at RF position:

a)increase the cell length

b)use Bucked Coils: 2 coils of opposite polarity
placed at the same position along the beam-axis
(homocentric coils)

® With the alternation of the Bucked Coils polarity, B
can be reduced at desired off-axis locations

@ Proposed and designed a Bucked Coils Lattice

Monday, 7 May 12
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Bucked Coils Lattice (BC)
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Bucked Coils Lattice (BC)

. Of -LiH absorber-~r-LiH absorber
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Bucked Coils Lattice (BC)

2 Of -LiIH absorber-~i-LiH absorber

@ I will only present 6 different versions:
BC-I, -II, -III, -1V, -V, -VI
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Bucked Coils Lattice (BC)

| |
2 Of -LiIH absorber-~i-LiH absorber

@ I will only present 6 different versions:
BC-I, -II, -III, -1V, -V, -VI

@ All BC versions have the same components. They
only differ in cell-length and current densities
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Bucked Coils Lattice (BC)

| |
2 Of -LIH absorber-~r--LiH absorber

@ I will only present 6 different versions:
BC-I, -II, -I1I, -1V, -V, -VI

@ All BC versions have the same components. They
only differ in cell-length and current densities

Summary of differences between FSIIA and BC lattices

Lattice BC-1V BC-VI

Full-cell | 150 | 210 | 210} 210 | 180 | 1.80 | 1.80
length, L [m]
IC [A/mm?] |106.667|120.00|97.20 | 87.48 |132.00 | 120.00 | 87.48

OC [A/mm3] | N/A |90.24 | 77.14 | 66.73 | 99.26 | 90.00 | 66.73
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FSIIA vs BC: Magnetic Fiela
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Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
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FSIIA vs BC: Magnefic Field
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FSIIA vs BC: Magnetic field

end of RF

i

*at z= end of RF (most sensitive location wrt RF breakdown)
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FSIIA vs BC: Magnetic field
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Simulation

® G4MICE (beam also matched using Optics application of G4MICE)
@ 1,000 muons

@ Gaussian P distribution centred at 232 MeV/c
(O'RM5218.33 N\eV/c)

® 10 mm transverse emittance
@ 0.07 ns longitudinal emittance

@ Muon decays, mcs, straggling: ON
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FSIIA vs BC: beam
cooling and transmission

- BC-V
BC-VI
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Better cooling FSIIA: ~55%
for FSIIA and BC-1V BCs: “70-75%
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FSIIA vs BC: transmission
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Monday, 7 May 12


mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk

Feasibility-hoop stress (1/2)
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets

@ These magnets can only be constructed with superconducting (SC) technology
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets

@ These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field
R: radius

@ Lorentz force generates hoop stress, 0=JBR (approximation)
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets

@ These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

@ Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa i

@ Lorentz force generates hoop stress, 0=JBR (approximation)
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets

@ These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

@ Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa i

@ Lorentz force generates hoop stress, 0=JBR (approximation)

m
Lattice|35 cm [

e m
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Feasibility-hoop stress (1/2)

@ All BC versions and FSIIA require strong solenoidal magnets

@ These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

@ Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa i

@ Lorentz force generates hoop stress, 0=JBR (approximation)

m
Lattice|35 cm [

e sca |20
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Feasibility-critical surface (2/2)
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Feasibility-critical surface (2/2)

@ The feasibility of the SC magnets
must be analysed taking into account
their quench limits (quench effect:
when a SC transforms fo a normal-
conductor)
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Feasibility-critical surface (2/2)

@ The feasibility of the SC magnets
must be analysed taking into account
their quench limits (quench effect:
when a SC transforms fo a normal-
conductor)

@ Critical behaviour of SC can be
described by a critical surface (at a
particular temperature T and current
density, there is a specific field that
will transform the SC to a normal-
conductor).

Monday, 7 May 12


mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk

Feasibility-critical surface (2/2)

@ The feasibility of the SC magnets
must be analysed taking into account
their quench limits (quench effect:
When a SC .I.ransforms .I.O a normal_ Critical surface of NbTi at 1.9 and 4.2 K

6000

conductor) & B _I__+—

4 | s +
@ Critical behaviour of SC can be e T
described by a critical surface (at a oo + o : T4y
particular temperature T and current + 4
density, there is a specific field that - - - 1
will transform the SC fo a normal- B (T)
conductor). SoBod o moecal 0BG O BOV

0 BC-VI

Note: BC-IVs point is behind BC-1, and BC-VIs behind BC-V
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Feasibility-critical surface (2/2)

@ The feasibility of the SC magnets
must be analysed taking into account
their quench limits (quench effect:
When a SC .I.ransforms .I.O a normal_ Critical surface of NbTi at 1.9 and 4.2 K

6000

conductor) & B _I__+—

4 | s +
@ Critical behaviour of SC can be e T
described by a critical surface (at a oo + o : T4y
particular temperature T and current + 4
density, there is a specific field that - - - 1
will transform the SC fo a normal- B (T)
conductor). SoBod o moecal 0BG O BOV

0 BC-VI

Note: BC-IVs point is behind BC-1, and BC-VIs behind BC-V

All lattices are within the limits of
superconducting operation

Monday, 7 May 12


mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk

Conclusions on Bucked Coils
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Conclusions on Bucked Coils

@ The reference cooling lattice of the Neutrino Factory, FSIIA, performs well wrt

transmission and cooling dynamics BUT has large B at RF cavities.
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Conclusions on Bucked Coils
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Where I could
contribute

@ Beam dynamics:
@ emittance reduction
@ beam-matter interactions
@ RF cavity studies

@ SC magnet design
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Thank you!




Transverse betatron function

@ Using the Optics application of G4MICE

@ Lower Bt
->smaller equilibrium emittance
->better cooling
o and BC-IV have
smallest Br values-> expect
lowest equilibrium emittance
@ Expect worse cooling for

, and -VI

Black: FSIIA
Red: BC-I
Green: BC-11I
Blue: BC-III

Purple: BC-V
Cyan: BC-VI
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