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Few words about me

2004-08: BSci Physics at the University of Cyprus

2008-2012: PhD in Particle/Accelerator Physics at 
Imperial College London; Full scholarship (STFC); 
PhinisheD ~3 weeks ago
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1. Final year undergraduate project on CDF (supervisor: Assistant Prof. 
Fotios Ptochos):
“Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross 
section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected 
at CDF detector 
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2a) 4D emittance reduction 
using Ionisation Cooling
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2a) 4D emittance reduction 
using Ionisation Cooling

Very briefly (we’ll see the motivation later), ionisation cooling can decrease muon 
emittance very fast (before muons decay):
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5

I proposed and designed a new cooling channel for the Neutrino Factory that 
achieves a significantly lower B at the RF position than the reference lattice 
while keeping the positive aspects (more in a few slides!!)
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2b) Muon Collider (MC): 
6D cooling channel
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6D cooling channel
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A lepton collider with sufficient energy and luminosity could compliment 
and extend the reach of LHC

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
Monday, 7 May 12

mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk


2b) Muon Collider (MC): 
6D cooling channel

7

A lepton collider with sufficient energy and luminosity could compliment 
and extend the reach of LHC
In order to achieve the desired luminosity (L~1030-1034cm-2s-1), 6D cooling is 
required (E, t, x, x’, y, y’)

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
Monday, 7 May 12

mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk


2b) Muon Collider (MC): 
6D cooling channel

7

A lepton collider with sufficient energy and luminosity could compliment 
and extend the reach of LHC
In order to achieve the desired luminosity (L~1030-1034cm-2s-1), 6D cooling is 
required (E, t, x, x’, y, y’)
I designed a lattice that uses: 

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
Monday, 7 May 12

mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk


2b) Muon Collider (MC): 
6D cooling channel

7

A lepton collider with sufficient energy and luminosity could compliment 
and extend the reach of LHC
In order to achieve the desired luminosity (L~1030-1034cm-2s-1), 6D cooling is 
required (E, t, x, x’, y, y’)
I designed a lattice that uses: high-E

medium-E
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experiment aiming to demonstrate muon emittance reduction 
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Tools/skills: C++, ROOT, team-work
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There was a thought of using a 
thermocouple that could warn for a 
potential temperature rise of target
I performed calculations to see if a 
thermocouple was sensitive enough to 
detect a temperature change in a small time
After the target was fixed I participated in 
beamline commissioning shifts at RAL
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1. Final year undergraduate project on CDF (supervisor: Assistant Prof. 
Fotios Ptochos):
“Upsilon Meson Polarization”: Measurement of Upsilon polarization and its differential production cross 
section, as a function of its transverse momentum, using muons produced in Upsilon decays and detected 
at CDF detector 

2. PhD (supervisor: Dr. Jaroslaw Pasternak, co-supervisor: Prof. Ken Long):

b. Muon Collider: designed a 6D cooling channel
c. MICE* at RAL**: worked on the replacement target system, beamline 

commissioning shifts 

*MICE: Muon Ionisation Cooling Experiment

**RAL: Rutherford Appleton Laboratory
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a. Neutrino Factory 4D Ionisation Cooling Lattices (main part of my talk)
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Violation) by observing μ-->e- conversion
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Violation) by observing μ-->e- conversion

(Protons->Target->pions->muons)

They need low energy muons->so they need a muon decelerator

There is pion contamination->so they need material to stop pions

I designed a muon decelerator, using RF cavities set at 0o phase, 
and absorbers to reduce pion contamination (decreased muon 
energy by factor of 1.6 while achieving 70% muon transmission: 
http://www.astec.ac.uk/emmafiles/meetings/ffag11/14/PRISM/13.Alekou.pdf)
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energy by factor of 1.6 while achieving 70% muon transmission: 
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Tools: GEANT4 based frameworks, C++, ROOT
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d. COMET/PRISM+: designed a muon decelerator

+COMET/PRISM: Coherent Muon to Electron Transition/Phase Rotated Intense Slow Muon source

^^Paul Scherrer Institute

e. Mu2e^ at PSI^^: 1 month->detector calibrations, daily shifts

^Mu2e: Muon-to-electron conversion experiment
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2e) Mu2e
I participated in Mu2e test run, at 
PSI, Switzerland for a month
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using hardware, controls and 
electronics adjustments informed by 
data analysis using radioactive 
sources. Daily shift participation
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Neutrino Factory will study neutrino oscillations and measure the 
mixing parameters in unprecedented precision by producing the 
most intense and high purity neutrino beam ever achieved
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Ionisation cooling: dE/dx

Pt

Pl

Muons pass through absorbers 
where their momentum 
decreases in every direction

re-accelerationThen they pass through RF 
cavities, where their energy is 
restored, but only in the 
longitudinal direction

So the transverse phase-space (4D) 
of the muon beam is reduced!

x’, y’

x, yafter cooling

before cooling
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Motivation (1/3)

1.5 m

Performs well with respect to transmission and cooling dynamics, 
but...

*FSIIA=Feasibility Study IIA

17

Reference ionisation cooling channel of the Neutrino 
Factory, FSIIA*: Coil-LiH absorber-RF-LiH absorber 

muon 
beam
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Motivation (2/3)
...FSIIA has large B at the 
position of the RF cavities...
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Motivation (2/3)

5.2. RF BREAKDOWN MECHANISM IN THE ABSENCE OF
MAGNETIC FIELD

Figure 5.1.: Mutliple achievable gradient as a function of the external magnetic
field for different button material. Figure taken from [7].

5.2. RF Breakdown Mechanism in the Absence of

Magnetic Field

The breakdown models without magnetic fields are described in detail in [8].
In all models, the breakdown is initiated by asperities, where the local electric
field is higher by a factor �FN , introduced by Fowler-Nordheim [83]. Each
asperity emits electron currents (dark current), each of which has a specific
value of �FN . The field emitted average electron current density JF (

A

m

2 ) for
a surface field2

E (

V

m

), and local field Elocal = �FNE is given by

JF = 6 ⇥ 10

�12 ⇥ 10

4.52��0.5 E

2.5
local

�1.75

e
� ⇣�

1.5

E
local , (5.2.1)

where � is the material work function in eV , and ⇣ = 6.53⇥10

9

(eV)

�1.5
⇣

V

m

⌘
.

It is assumed that the breakdown occurs where the local field is maximum
and therefore higher than the average value by a factor ↵. The average value
is determined from the gradient dependence of the dark current from many
asperities:

Elocal

↵
= h�FN ihEi, (5.2.2)

where ↵ � 1 depends on the probability distribution of �FN [8].

2Note that, although in the other sections a vector V was represented with a letter and an
arrow (~V ), in this section a vector is represented with a bold letter (V).
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...and recent studies show that 
high external B at RF cavities 
can lead to RF breakdown

...FSIIA has large B at the 
position of the RF cavities...
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Motivation (2/3)

An alternative cooling lattice should 
be found that will not only decrease 
significantly the B at the RF position, 
but that will also achieve a 
comparable transmission and cooling 
performance to FSIIA
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field for different button material. Figure taken from [7].
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is determined from the gradient dependence of the dark current from many
asperities:

Elocal

↵
= h�FN ihEi, (5.2.2)

where ↵ � 1 depends on the probability distribution of �FN [8].

2Note that, although in the other sections a vector V was represented with a letter and an
arrow (~V ), in this section a vector is represented with a bold letter (V).
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...and recent studies show that 
high external B at RF cavities 
can lead to RF breakdown

...FSIIA has large B at the 
position of the RF cavities...
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Motivation (3/3)
How do decrease B at RF position: 

a) increase the cell length

b)use Bucked Coils: 2 coils of opposite polarity 
placed at the same position along the beam-axis 
(homocentric coils)

With the alternation of the Bucked Coils polarity, B 
can be reduced at desired off-axis locations

Proposed and designed a Bucked Coils Lattice

+
-
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Bucked Coils Lattice (BC)
7.1. LATTICE DESCRIPTION
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Inner: -
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Wednesday, 8 February 12Figure 7.2.: A full-cell of the Bucked Coils (BC) configuration. BC starts with
a pair of bucked coils, followed by one RF cavity that has a LiH
on each side.

(a) FSIIA full-cell
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Inner: -
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Inner: +

Wednesday, 8 February 12

(b) Bucked Coils full-cell

Figure 7.3.: FSIIA and Bucked Coils lattices consist of the same components
apart from the fact that the Bucked Coils lattice uses a pair of
coils and has a larger cell-length.
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PairOfCoils-LiH absorber-RF-LiH absorber

I will only present 6 different versions: 
BC-I, -II, -III, -IV, -V, -VI
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Bucked Coils Lattice (BC)
PairOfCoils-LiH absorber-RF-LiH absorber

I will only present 6 different versions: 
BC-I, -II, -III, -IV, -V, -VI

All BC versions have the same components. They 
only differ in cell-length and current densities
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Summary of differences between FSIIA and BC lattices

Lattice FSIIA BC-I BC-II BC-III BC-IV BC-V BC-VI
Full-cell 

length, L [m]
1.50 2.10 2.10 2.10 1.80 1.80 1.80

IC [A/mm2] 106.667 120.00 97.20 87.48 132.00 120.00 87.48

OC [A/mm2] N/A 90.24 77.14 66.73 99.26 90.00 66.73

L
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FSIIA vs BC: Magnetic Field
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FSIIA vs BC: Magnetic Field
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FSIIA vs BC: Magnetic field*

*at z= end of RF (most sensitive location wrt RF breakdown)

end of RF

R
z 22
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FSIIA vs BC: Magnetic field*

*at z= end of RF (most sensitive location wrt RF breakdown)

end of RF
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FSIIA vs BC: Magnetic field*

*at z= end of RF (most sensitive location wrt RF breakdown)
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Simulation

G4MICE (beam also matched using Optics application of G4MICE)

1,000 muons

Gaussian P distribution centred at 232 MeV/c 
(σRMS:18.33 MeV/c)

10 mm transverse emittance

0.07 ns longitudinal emittance

Muon decays, mcs, straggling: ON
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FSIIA vs BC: beam 
cooling and transmission

Better cooling 
for FSIIA and BC-IV 

FSIIA: ~55%
BC’s: ~70-75%
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FSIIA vs BC: transmission 
in AT<30 mm
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Feasibility-hoop stress (1/2)
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Feasibility-hoop stress (1/2)

26

 All BC versions and FSIIA require strong solenoidal magnets
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Feasibility-hoop stress (1/2)

26

 All BC versions and FSIIA require strong solenoidal magnets
 These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

R: radius

 Lorentz force generates hoop stress, σ=JBR (approximation)
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Feasibility-hoop stress (1/2)

 Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa
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Feasibility-hoop stress (1/2)

 Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa

Lattice 35 cm

FSIIA 238.9

Lattice 60 cm
BC-I 345.3

BC-II 249.9

BC-III 188.2

BC-IV 416.9

BC-V 304.0

BC-VI 187.4

26

 All BC versions and FSIIA require strong solenoidal magnets
 These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

R: radius

 Lorentz force generates hoop stress, σ=JBR (approximation)

Androula Alekou, Imperial College London, androula.alekou08@ic.ac.uk, LARP CM18/HiLumi Meeting
Monday, 7 May 12

mailto:androula.alekou08@ic.ac.uk
mailto:androula.alekou08@ic.ac.uk


Feasibility-hoop stress (1/2)

 Typical hoop stress limit for Nb-Ti SC coils: ~200 MPa

Lattice 35 cm

FSIIA 238.9

Lattice 60 cm
BC-I 345.3

BC-II 249.9

BC-III 188.2

BC-IV 416.9

BC-V 304.0

BC-VI 187.4

26

 All BC versions and FSIIA require strong solenoidal magnets
 These magnets can only be constructed with superconducting (SC) technology

J: current density
B: magnetic field

R: radius

 Lorentz force generates hoop stress, σ=JBR (approximation)

Only BC-III and 
BC-VI are below 

the 200 MPa limit!
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Feasibility-critical surface (2/2)
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Where I could 
contribute

Beam dynamics:

emittance reduction

beam-matter interactions

RF cavity studies

SC magnet design
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7.2. RESULTS

on the coils (hoops stress will be discussed thoroughly in section 9). Table 7.1
summarises the main characteristics of FSIIA and BC-I, whereas table 7.2
summarises the differences between the versions of the Bucked Coils lattice.

Table 7.2.: Summary of the differences between the four BC-versions presented
in this section.

Lattice BC-I BC-II BC-III BC-IV

Full-cell Length [m] 2.10 1.80 1.80 1.80

Coils

Current Density [A/mm

2
] IC: 120.00; IC: 128.07; IC: 132.00; IC: 90.00

OC: 90.24 OC: 112.80 OC: 99.26 OC: 80.00

7.2. Results

7.2.1. Magnetic field

The effect of the magnetic field reduction at the position of the RF cavities
is shown in figure 7.4, with the individual outer and inner coil fields superim-
posed. The combination of the two fields is also indicated.
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Figure 7.4.: Superposition of the Outer Coil (black) and Inner Coil (red) fields.
The resulting field is shown in green. Note that only the the
longitudinal on-axis fields (Bz) are shown.
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