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Approximate Annual Budget:  $145 million
Approximate hours of experiment delivery per year: 5000

About $30k per experiment hour to run!

400 hours hand-tuning in a year
$12 million value

~10 additional experiments
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à efficient tuning matters to maximize science-per-dollar spent

à new machine configurations enable new science (e.g. attosecond pulses), 
but are difficult to bring to operation initially



Many difficulties…

nonlinear 
effects / 
instabilities

fluctuations/noise
(e.g. laser spot)

hidden variables / sensitivities

reality
vs.
simulation

drift over time 

F. Wang

many small, compounding 
sources of uncertainty

J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 
cores at the NERSC”

computationally expensive simulations



Bayesian Optimization Reinforcement Learning
Trajectory control (Kain et al., PRAB 2020)

FEL optimization (O’Shea, et al., 2020)

Magnet power supply (St. John et al., PRAB 2021)

Fast switching between FEL pulse energies (Edelen et 
al., NeurIPS 2017)

Model Predictive Control
RF resonant frequency (Edelen, et al. TNS 2016)

Ion source control (NIMA 2016)

FEL optimization (Duris et al. 2020, Kirschner et al. 
PMLR 2019)

Emittance optimization at SPEAR3 (Hanuka et al. 
2021)

Laser plasma accelerators (Jalas et al, PRL 2021, 
Shaloo et al Nature 2020)

Injection efficiency

ç ç

ç

Many examples where BO and RL have been used in accelerators …

… but when to choose which approach?



Can treat many high-level accelerator tuning problems as  either time-
dependent or time-independent…

laser
profile

“search for optimal settings”

“game to take actions that maximize 
performance over time” 

as machine drifts over time à reoptimize, or keep playing



Some problems need to be treated as time-dependent…



Bayesian Optimization Reinforcement Learning

Analogous concepts, different terminology and usually different setting:
objective à reward

surrogate model à value function
acquisition function à policy                
acquire new sample à take an action             
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x (variable)

Select sample x à observe objective à refit surrogate model 
à use model predictions and uncertainty to choose next point 
according to an acquisition functions

Observe state à take action according to a control policy 

à observe reward à update policy or value function

Agent System

system state, reward

actions

Many ways to construct agent that learns from reward:
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Kirschner, ETH 
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à observe reward à update policy or value function

Agent System

system state, reward

actions

Many ways to construct agent that learns from reward:
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Example: https://dl4physicalsciences.github.io/files/nips_dlps_2017_16.pdf

Figs courtesy 
Johannes 
Kirschner, ETH 



Model Predictive Control

Edelen et al., TNS 2016 https://ieeexplore.ieee.org/document/7454846



Model Predictive Control

• RL can be thought of as trying to learn the step for optimization over future time horizon
(choose optimal action at time t to maximize reward / minimize cost over future)

• Without time-dependence, becomes optimization over an online system model 
(as we often use in accelerators)



moreless
assumed knowledge of machine

Model-Free 
Optimization

Observe performance 
change after a setting 

adjustment

à estimate direction 
toward improvement

Model-guided 
Optimization

Update a model  
during each search 

step

à use model to 
help select the next 

point

Global Modeling 
+ Feedforward 
Corrections

Make fast / accurate 
system model

à provide guess for 
good settings

à make predictions 
about machine

gradient descent
Simplex

Extremum Seeking

Bayesian optimization

Reinforcement learning

ML system models +
inverse models



• Use global inverse model to give rough suggested settings 
à then fine-tune with local optimizer

•

• Preliminary study at LCLS: 

- Two settings scanned  (L1S phase, BC2 peak current)

- Compared optimization algorithm with/without warm start

ML
Inverse 
Model

L1S phase
BC2 peak current

Local 
optimizer

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
Based on sim study w/ compact FEL: A.  Edelen, et al., FEL’17

Local optimizer alone was unable to 
converge à able to converge after 

initial settings from neural network

Suggested 
initial 

settings

warm start+local opt.

local opt. 

Inverse models: example from LCLS

position

en
er

gy



• Round to flat beam transforms are 
challenging to optimize

• Took measured scan data at Pegasus 
(UCLA) 

• Trained neural network  model to predict fits 
to beam image

• Tested online multi-objective optimization 
over model (3 quad settings) given present 
readings of other inputs 

Results are for 
one full day after 
last training data

Expert hand-tuning: 
10 – 20 minutes

G
U

N

So
le

no
id

 1
;  

0.
28

6m

Va
lv

e

St
ee

rin
g 

1

UV HeNe

M
irr

or

YA
G

1 
+ 

M
irr

or
; 0

.6
26

m

Ch
am

be
r

St
ee

rin
g 

2

St
ee

rin
g 

3

St
ee

rin
g 

4

St
ee

rin
g 

5

W
in

do
w

 (e
m

pt
y)

YA
G

2;
 1

.2
76

m

LI
N

A
C;

 1
.7

16
m

D
ip

ol
e 

1

Sk
ew

 Q
ua

d 
2;

 2
.9

48
m

Sk
ew

 Q
ua

d 
1;

 2
.8

36
m

Sk
ew

 Q
ua

d 
3;

 3
.0

99
m

Q
ua

d 
4;

 3
.3

05
m

 

Q
ua

d 
5;

 3
.4

47
m

YA
G

 4
 3

.1
91

m

Va
lv

e

BOX

D
RZ

 A
ft

er
bo

x;
 4

.4
60

m
YA

G
 A

ft
er

bo
x;

 4
.5

45
m

Q
ua

d 
A

ft
er

bo
x

1

Q
ua

d 
A

ft
er

bo
x

2

X-
ba

nd
 D

ef
le

ct
or

W
in

do
w

 (e
m

pt
y)

D
ip

ol
e 

2

YA
G

En
d 

of
 b

ea
m

lin
e

Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location

Another way: run optimizer on a learned online model

x_rms
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sNeural 
Network

Readings for other inputs
(at start of optimization only)

Flat Beam Quads (3)

x rms
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pixel intensity
sigma xy

x,y centroids

Genetic 
Algorithm

Pareto front
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Algorithm
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Can use neural network to provide first guess at solution, 
then fine tune with other methods…

E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes

Significant boost in convergence speed for other algorithms



RL on the round-to-flat beam transform:

• Trained DDPG offline using learned model

• Transferred to machine for retraining

• Once trained, RL had fastest convergence 
compared with other methods
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Pegasus beamline layout with selected distances

updated 1/18/2019 

quads used for flat beam screen location
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Model-informed Bayesian optimization J. Duris et al., PRL, 2020

Goal: adjust focusing magnets to maximize x-ray pulse energy

magnets

à can design GP kernel based on expected physics

Magnet 1

M
ag

ne
t 

2

x-ray pulse energy

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.124801

Including expected correlation improves ability to model the data with fewer samples
à faster optimization



Model-informed Bayesian optimization J. Duris et al., PRL, 2020

à can design GP kernel based on expected physics

Magnet 1

M
ag

ne
t 

2

x-ray pulse energy

ML optimization

ML w/ correlations     

standard optimizer

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.124801

Including expected correlation improves ability to model the data with fewer samples
à faster optimization



An easier way to get the 
correlations:
Take the Hessian of a model at the 
expected optimum à use those 
correlations in the GP kernel

As long as qualitative behavior is 
correct, should result in faster 
convergence

Was demonstrated at SPEAR3 for minimizing the 
vertical emittance (beam loss rate)

à No measured data needed, just a simulation A. Hanuka et al., NeurIPS 2019
A. Hanuka et al., PRAB 2021

Qualitative physics models can be easily incorporated into Bayesian optimization for fast tuning

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.072802

quadrupoles

SPEAR3

Model-informed Bayesian optimization



moreless
assumed knowledge of machine

Model-Free 
Optimization

Observe performance 
change after a setting 

adjustment

à estimate direction 
toward improvement

Model-guided 
Optimization

Update a model  
during each search 

step

à use model to 
help select the next 

point

Global Modeling 
+ Feedforward 
Corrections

Make fast / accurate 
system model

à provide guess for 
good settings

à make predictions 
about machine

gradient descent
Simplex

Extremum Seeking

Bayesian optimization

Reinforcement learning

ML system models +
inverse models



Example of prediction under large drift in inputs (and possibly hidden variables):

unseen region

Uncertainty estimate from neural network ensemble does not accurately cover the 
OOD prediction error, but it is relatively higher than for in-distribution data

à Uncertainty estimates are not always accurate and do need to be validated/calibrated



Uncertainty Quantification
Need prediction uncertainties to use model reliably in prediction and control
à standard neural network models are unaware of what they do not know

Want to know when one is out of the training distribution (OOD) making predictions less valid (e.g.
something on the machine has changed, new region of parameter space is entered)

Test shot within trained distribution  Out-of-distribution

O. Convery, PRAB, 
2021

Current approaches 
• Ensembles
• Gaussian Processes
• Bayesian NNs
• Quantile Regression

Sample Number (Time Ordered)

Neural network with 
quantile regression 
predicting FEL pulse 
energy at LCLS

unseen regionstest data

L. Gupta

Longitudinal phase space beam profiles

• BNN Predictions
• ASTRA Simulation

White area – values 
left out of training

A. Mishra

LCLS injector transverse distributions on out-of-training distribution shots,  
neural network ensemble

Bayesian 
neural network 
predicting 
scalar 
parameters for 
the LCLS-II 
injector 

https://github.com/lipigupta/FEL-
UQ/blob/main/notebooks/QR--
Interp-2.ipynb

https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb


11.4 GeV

13.09 GeV

10.49 GeV

Neural Network Model                 Simulation 
Trained neural network on simulation data

à ~ million times faster execution

A. L. Edelen, et al., NeurIPS 2019

NN predicts 25 scalar outputs (𝜎!,#,$ 𝜀!,# 𝜎!!,#!
𝜎% etc…) and phase space at the undulator entrance 



Finding Sources of Error Between Simulations and Measurement

Real accelerator can have many non-idealities and 
miscalibrations not included in physics simulations 

à Neural network model allows fast / automatic exploration 
of possible error sources

Here: calibration offset in solenoid strength found automatically with neural network model 
(trained first in simulation, then calibrated to machine)



Data 
processing

Data 
processing

FACET-II LCLS

Tying it all together: integration with HPC and continuous online learning 



LCLS Injector Surrogate Model 
• Many versions (predict phase space, evolution along z etc); 

including one with scalar outputs of interest at OTR2

• Inputs: laser length + spot size, L0A/B phases, 
Solenoid, SQ quad, CQ quad, 6matching quads

• Outputs: emittances, bunch length, spot sizes, 
covariances (for Twiss calc), energy

• Neural network trained on IMPACT-T sims

• Set up to take machine inputs in PV units

• Focused on interpolation to sim vs. exact match to 
measurements

• Using in tuning algorithm + code testing 

Example prototyping optimization algorithms with SM (GP-BO in this case)

IMPACT-T and SM trained on it deviate from measurements, but similar qualitatively



Standard RBF Kernel
Kernel from Hessian of Surrogate Model

(trained on IMPACT-T sims)

Nominal
emit_x 0.4317   
emit_y 0.424
bmag_x 1.368
bmag_y 1.422

Standard RBF
emit_x 0.488 
emit_y 0.420
bmag_x 1.128
bmag_y 1.233

Kernel from Hessian 
emit_x 0.428
emit_y 0.373 
bmag_x 1.137
bmag_y 1.113

• Both start from randomly-sampling within the 
bounds

• “Baseline” is tuning solution that ops was 
using that day 

• Emittance measurement takes 3-4 minutes

Using simulation surrogate model to inform Bayesian optimization allows rapid tuning to 
human-level quality without any previous data

25 9

Using Injector Model for Bayesian Optimization



Seeded with 5 random training points 
from the previous run (may help or hurt 
convergence depending on how much has 
changed)

“Baseline” is the solution from before the 
shutdown

By iteration 2 already had a decent solution

à Suggests this is viable for use in regular 
injector tuning

2

Re-using learned information:  injector recovery after a 
brief shutdown

Biggest impediment right now is the robustness of the emittance measurement itself (quad scan)



interactive model widget
live EPICS prediction from surrogate model, 
streamed to control room

EPICS server 
running surrogate 
model

Launch 
controls and 
readback GUI

This case:  ASTRA sim with 3D space charge evaluates in milliseconds (vs. 5-6 minutes)

Live read-backs and user controls

gun phase
solenoid
charge
laser spot

Control Room Integration

Using + developing lume-model and lume-epics (https://www.lume.science/)
à Demo in Binder: https://github.com/jacquelinegarrahan/lume-model-server-demo

https://www.lume.science/
https://github.com/jacquelinegarrahan/lume-model-server-demo


Running LUME-IMPACT-T and 
Neural Network Model of LCLS 
Injector Online

LUME tools are available and open source: https://www.lume.science/

https://www.lume.science/


Data 
processing

Data 
processing

FACET-II LCLS

Tying it all together: integration with HPC and continuous online learning 



Summary

Bayesian optimization and reinforcement learning both of utility for high-level 
tuning and control

• Grew out of different communities and time dependent vs. time independent setting, but share 
fundamental commonalities 

BO and RL excel in different regimes
• BO: exploratory + low data regime, optimization of new setups, slow measurements
• RL: high data regime, continuous control

Both can benefit substantially from better system models
• Warm starts  from system models
• Model-informed kernel for BO
• Pre-training RL agents using fast-executing system models

à Tying together strengths of different approaches
à Improve system modeling (speed + accuracy), use model-informed BO for 

exploring new setups, use pre-trained RL policies for fast switching between 
setups + continuous control



Backups



laser
profile

automated control
+ optimization

digital twins + online modeling
(fast sims, autodiff sims, model calibration)

advanced diagnostics
(reconstruct / analyze beam)

anomaly detection 
failure prediction

incorporate 
physics

information

extract unexpected
relationships

(feed into control / design)

J. Duris

C. Emma

+ need UQ for all

Future: tying together and scaling these to 
higher dimension + more extreme beams


