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» photon beam to
7 experiment
stations

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015) A Marinelii IPAC'18
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Approximate Annual Budget: $145 million
Approximate hours of experiment delivery per year: 5000
About $30k per experiment hour to run!

$12 million value

400 hours hand-tuning in a year ~=—» ~10 additional experiments



» photon beam to
7 experiment
stations

A. Marinelli, et al., Nat. Commun. 6, 6369 (2015) A Marinelii IPAC'18
. Marinelli

J. Qiang et al, PRAB (2017)
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- efficient tuning matters to maximize science-per-dollar spent

- new machine configurations enable new science (e.g. attosecond pulses),
but are difficult to bring to operation initially




Many difficulties...

computationally expensive simulations

Simulation Measurement

fluctuations/noise
(e.g. laser spot)
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Many examples where BO and RL have been used in accelerators ...

4 N\ (
Bayesian Optimization Reinforcement Learning
FEL optimization (Duris et al. 2020, Kirschner et al. Trajectory control (Kain et al., PRAB 2020)
PMLR 2019)
E £20
5 :
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:gn = >
E- ' I p— GP E—o.s
x ; GP w/ corr. 2 10 — final
% 10 20 30 40 50 " initial
Step number -1.5 --- target
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no. episode
Emittance optimization at SPEAR3 (Hanuka et al.
2021) FEL optimization (O’Shea, et al., 2020)
Laser plasma accelerators (Jalas et al, PRL 2021, Magnet power supply (St. John et al., PRAB 2021)
Shaloo et al Nature 2020)
Fast switching between FEL pulse energies (Edelen et
\_ Injection efficiency ) al., NeurlIPS 2017)
. J
4 )

Model Predictive Control

RF resonant frequency (Edelen, et al. TNS 2016)

lon source control (NINIA 2016) ... but when to choose which approach?




Can treat many high-level accelerator tuning problems as either time-
dependent or time-independent...
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as machine drifts over time 2 reoptimize, or keep playing



Some problems need to be treated as time-dependent...

RF electron gun at the Fermilab Accelerator Radio frequency quadrupole (RFQ) for the
Science and Technology (FAST) facility PIP-II Injector Test
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Bayesian Optimization
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Many ways to construct agent that learns from reward:
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system state, reward

Agent

actions
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Observe state = take action according to a control policy

- observe reward = update policy or value function

VAN

J

Analogous concepts, different terminology and usually different setting:

objective

-> reward

surrogate model = value function
acquisition function = policy
acquire new sample = take an action
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Bayesian Optimization
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Slale /7%% = aNony

h o PR Qb\'-C VSH

7§>@ ki |

NS \]6\\\'\{/ Q\AV\Q\\OJ\

system state, reward

Agent

actions

Observe state = take action according to a control policy

- observe reward = update policy or value function

AN J
Analogous concepts, different terminology and usually different setting: | <.\«
objective = reward Ty

surrogate model = value function
acquisition function = policy
acquire new sample = take an action

7%70 = &
a\\ £

Siiji—\///

& ccele raxo —

Moo e




Model Pred

ictive Control

Immediate Past
(data sent to controller)

—> Possible Future

(at each time step, iterate through the next
series of proposed actions until the

0—\_6/\0_? predicted system output is acceptable)

Measured disturbance

Previous control actions

Previous system output

N

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions

o__o,/‘o—_o_?_o\‘
I ’\\\Qso—o—cb—o—o—o
L el pciinea, s
Desired
output Prediction Horizon (N,) =
Control Horizon (N ) _
| | | | | | | | | | | | | | |
t-1 t t+1 t+N t+N,

Basic concept:

Proposed
Actions

Use a predictive model to assess the outcome of
possible future actions

Choose the best series of actions

Execute the first action

Gather next time step of data

Process

Actions f

Repeat
* Measurements
Model —l
Optimization | o | ?\Ige“a '\422’

Edelen et al, TNS 2016 https:/l/ieeexplore.ieee.org/document/7454846




Model Predictive Control

Immediate Past
(data sent to controller)

0—\_6/\0_? predicted system output is acceptable)

Measured disturbance

Previous control actions

Previous system output
|
L ]

Desired
output

—> Possible Future

(at each time step, iterate through the next
series of proposed actions until the

N

Actions proposed by controller
to achieve desired output

Predicted system output from model
given the proposed control actions
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Basic concept:
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Use a predictive model to assess the outcome of
possible future actions

Choose the best series of actions
Execute the first action
Gather next time step of data

Repeat

Measurements

Process

* RL can be thought of as trying to learn the step for optimization over future time horizon
(choose optimal action at time t to maximize reward / minimize cost over future)

Without time-dependence, becomes optimization over an online system model

(as we often

use in accelerators)



assumed knowledge of machine

less < > more
N\ . 4 A
Model-Free Model-guided Global Modeling
Optimization Optimization + Feedforward
Corrections
Observe performance Update a model
change after a setting during each search Make fast | accurate
adjustment step system model
- estimate direction > use model to > provide guess for
toward improvement help select the next good settings
point - make predictions
) L L about machine )

gradient descent

A

Simplex
Extremum Seeking

Bayesian optimization

Reinforcement learning

v

ML system models +
inverse models



A. Scheinker, A. Edelen, et al,, PRL 21, 044801 (2018)
Based on sim study w/ compact FEL: A. Edelen, et al., FEL’l 7

Inverse models: example from LCLS

AE (GeV)

Use global inverse model to give rough suggested settings

—> then fine-tune with local optimizer

Preliminary study at LCLS:

Two settings scanned (LIS phase, BC2 peak current)

Compared optimization algorithm with/without warm start
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Local optimizer alone was unable to
converge = able to converge after

initial settings from neural network




Another way: run optimizer on a learned online model
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» Trained neural network model to predict fits
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Can use neural network to provide first guess at solution,
then fine tune with other methods...

Hand-tuning in seconds vs. tens of minutes

Significant boost in convergence speed for other algorithms

E. Cropp et al,, in preparation
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i i i . . Duris et al,, PRL, 2020
Model-informed Bayesian optimization ) burts

—> can design GP kernel based on expected physics

x-ray pulse energy

135
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Including expected correlation improves ability to model the data with fewer samples
- faster optimization

https:/ljournals.aps.org/prl/abstract/ 1 0.1 | 03/PhysRevLett. | 24. 12480



i i i . . Duris et al,, PRL, 2020
Model-informed Bayesian optimization ) burts

—> can design GP kernel based on expected physics

NN

x-ray pulse energy
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Model-informed Bayesian optimization

An easier way to get the

correlations:

Take the Hessian of a model at the
expected optimum - use those
correlations in the GP kernel

As long as qualitative behavior is
correct, should result in faster

convergence

Was demonstrated at SPEAR3 for minimizing the

vertical emittance (beam loss rate)

- No measured data needed, just a simulation
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A. Hanuka et al., NeurlIPS 2019
A. Hanuka et al., PRAB 2021

Qualitative physics models can be easily incorporated into Bayesian optimization for fast tuning

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.072802



assumed knowledge of machine

less < > more
N\ . 4 A
Model-Free Model-guided Global Modeling
Optimization Optimization + Feedforward
Corrections
Observe performance Update a model
change after a setting during each search Make fast | accurate
adjustment step system model
- estimate direction > use model to > provide guess for
toward improvement help select the next good settings
point - make predictions
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Example of prediction under large drift in inputs (and possibly hidden variables):

<+—— unseen region

v

100
Measured

20 Predicted (Ensemble Mean)

0 20000 40000 60000 80000 100000
Sample Number (increasing time)

175 Measured

Predicted (Ensemble Mean)
150

*gg WWMMMMM VAL A

20000 40000 60000 80000 100000
Sample Number (increasing time)

y

Uncertainty estimate from neural network ensemble does not accurately cover the
OQOD prediction error, but it is relatively higher than for in-distribution data

- Uncertainty estimates are not always accurate and do need to be validated/calibrated



Uncertainty Quantification

Need prediction uncertainties to use model reliably in prediction and control

= standard neural network models are unaware of what they do not know

Want to know when one is out of the training distribution (OOD) making predictions less valid (e.g.
something on the machine has changed, new region of parameter space is entered)
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Current approaches

*  Ensembles

*  Gaussian Processes
*  Bayesian NNs

*  Quantile Regression

Neural network with
quantile regression
predicting FEL pulse
energy at LCLS

https://qgithub.com/lipigupta/FEL-
uQ/blob/main/notebooks/QR--

Interp-2.ipynb
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https://github.com/lipigupta/FEL-UQ/blob/main/notebooks/QR--Interp-2.ipynb

Trained neural network on simulation data

- ~ million times faster execution
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Finding Sources of Error Between Simulations and Measurement

— 10 .
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Real accelerator can have many non-idealities and % 08 1 ’
miscalibrations not included in physics simulations £ 07 .
R
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Here: calibration offset in solenoid strength found automatically with neural network model
(trained first in simulation, then calibrated to machine)
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Tying it all together: integration with HPC and continuous online learning

. Model Prediction Displays Model Output Predictions (e.g. beam images, scalars) HPC cluster
4 (e.g. SDF at SLAC,
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LCLS Injector Surrogate Model

*  Many versions (predict phase space, evolution along z etc);
including one with scalar outputs of interest at OTR2

* Inputs: laser length + spot size, LOA/B phases,
Solenoid, SQ quad, CQ quad, 6matching quads

Emittance
Screens/Wires
OTR2

Deflector

®*  Outputs: emittances, bunch length, spot sizes,

. . 2-km point in 3-km SLAC linac{ L1S
covariances (for Twiss calc), energy 13500V

Spectrometer YAGS2

Screen

. Neural network trained on IMPACT-T sims

*  Set up to take machine inputs in PV units

. . . IMPACT-T and SM trained on it deviate from measurements, but similar qualitatively
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Using Injector Model for Bayesian Optimization

Emittance (mm-mrad)

Bmag (arb.)
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Iteration

Both start from randomly-sampling within the
bounds

“Baseline” is tuning solution that ops was
using that day

Emittance measurement takes 3-4 minutes

Kernel from Hessian of Surrogate Model
(trained on IMPACT-T sims)

Emittance (mm-mrad)

1.4 4
Emit_x
121 Emit_y
1.0 Emit_x (baseline)
. Emit_y (baseline)
0.8 - 9
0.6 -
J
0.4 4
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteratiol
I -
2.2 I
Bmag_x
201 | Bmag_y
1.8 1 Bmag_x (baseline)
I Bmag_y (baseline)
1.6 -
|
1.4 1 I
1.2 I
1.0 A . T T T T . . .
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Iteration
Nominal Kernel from Hessian Standard RBF
emit x 0.4317 emit_x 0.428 emit_x 0.488
emit_y 0.424 emit_y 0.373 emit_y 0.420
bmag x 1.368 bmag_x 1.137 bmag x 1.128
bmag_y 1.422 bmag_y I.113 bmag_y 1.233

Using simulation surrogate model to inform Bayesian optimization allows rapid tuning to
human-level quality without any previous data




Re-using learned information: injector recovery after a

brief shutdown

Seeded with 5 random training points
from the previous run (may help or hurt
convergence depending on how much has
changed)

“Baseline” is the solution from before the
shutdown

By iteration 2 already had a decent solution

= Suggests this is viable for use in regular
injector tuning
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GP-BO with Kernel from Hessian of Simulation Surrogate Model - Injector Recovery 06/09/21
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GP-Bd with Kernel from Hessian of Simulation Surrogate Model - Injector Recovery 06/09/21
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Biggest impediment right now is the robustness of the emittance measurement itself (quad scan)



Control Room Integration

Live read-backs and user controls

EPICS server

running surrogate

model T

Launch
COHtI"OlS and gur phzse
read baCk G U | Pk e charge «

wamen laser spot

This case: ASTRA sim with 3D space charge evaluates in milliseconds (vs. 5-6 minutes)

interactive model widget

live EPICS prediction from surrogate model,
streamed to control room

Using + developing lume-model and lume-epics (https://www.lume.science/)
- Demo in Binder: https://github.com/jacquelinegarrahan/lume-model-server-demo



https://www.lume.science/
https://github.com/jacquelinegarrahan/lume-model-server-demo

Running LUME-IMPACT-T and
Neural Network Model of LCLS
Injector Online

e Lume-IMPACT-T online

Read EPICS PVs as input

Displays phase space predictions at OTR2
+ line plots

Updates every 2 minutes (length of time
for one IMPACT-T run)

https://www.youtube.com/watch?v=P6H
YfpV6xXM

* SM at YAGO2

Continuously updates
Serves output PVs

Will update to include OTR2, line plots
soon

https://www.youtube.com/watch?v=FZny
98PGcmU&feature=youtu.be

Lume-IMPACT-T online

SM online

_
YAGO2 - state: OUT

LUME tools are available and open source: https://www.lume.science/


https://www.lume.science/
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Tying it all together: integration with HPC and continuous online learning
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Summary

Bayesian optimization and reinforcement learning both of utility for high-level
tuning and control
*  Grew out of different communities and time dependent vs. time independent setting, but share
fundamental commonalities
BO and RL excel in different regimes

°* BO: exploratory + low data regime, optimization of new setups, slow measurements
* RL: high data regime, continuous control

Both can benefit substantially from better system models

° Warm starts from system models
° Model-informed kernel for BO
° Pre-training RL agents using fast-executing system models

Tying together strengths of different approaches

N2\ %

Improve system modeling (speed + accuracy), use model-informed BO for
exploring new setups, use pre-trained RL policies for fast switching between
setups + continuous control



Backups



Future: tying together and scaling these to
higher dimension + more extreme beams

advanced diagnostics

(reconstruct / analyze beam)
anomaly detection

failure prediction
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digital twins + online modeling
(fast sims, autodiff sims, model calibration)

automated control
+ optimization
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+ need UQ for all




