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Background
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CNMS is a national user facility with a 
mission to advance nanoscience
About CNMS:
• Unlike many user facilities, you don’t 

need to have samples to apply for time

• Two calls per year for continuous 
access; anytime for short-term projects

• Simple 2-page proposal

• Free access to laboratories, equipment 
and expertise if you agree to publish

• Proposal deadlines: early May and 
mid-October

• Joint proposals with neutron sources 
(SNS, HFIR)

Research areas:
• Synthesis – 2D, precision synthesis, selective 

deuteration

• Nanofabrication – direct-write, microfluidics, 
cleanroom

• Advanced Microscopy – AFM, STM, aberration-
corrected TEM/STEM, atom-probe tomography

• Functional Characterization – laser 
spectroscopy, transport, magnetism, 
electromechanics

• Theory and Modelling – including gateway to 
leadership-class high performance computing

CNMS is a Nanoscale Science Research Center supported by the U.S. Department of Energy, 
Office of Science, Scientific User Facilities Division

1.0µm
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Introduction: ‘Smart’ experiments

Automated chemical synthesis with feedback

Granda et al. Nature 559, 377 (2018)

‘Phase Mapping’ at a synchrotron

Kusne et al. Nat. Comm. 11, 5966 (2020)
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RL: Defect engineering
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RL: Defect engineering

Outlines

Automated Exp.: Manipulations Adaptive Sampling
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Reinforcement Learning Basics

Agent Environment

States

Actions

Model-based 
Approximations

Partial 
Information

Rewards

• We wish to learn stochastic 

policies that map states to 

actions to maximize some 

reward

• Two main types of RL: model-

based, and model-free

• We can deal with continuous 

and discrete action spaces

• Policies are generated that 

aim to maximize expected 

future rewards emitted from 

the environment

• RL is neither supervised nor 
unsupervised – it deals with optimal 
decision making in uncertain 
environments

• Variants of RL include on-policy 
learning and off-policy learning, and 
fully offline learning.
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Main ideas of Reinforcement Learning

• A policy defines how an actor behaves in a Markov Decision Process 
(MDP), and is defined as a distribution of actions over states:

• We can sample the policy to obtain trajectories τ through the MDP

τk = (S1,A1,R1,…,)

• The goal in RL is to solve the MDP to maximize the cumulative 
rewards. The policy is parametrized by parameters θ. So we can 
write the objective function as

𝜋 𝑎 𝑠 = ℙ 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠)

𝐽 𝜃 = 𝔼𝜏~𝜋𝜃 [𝑅 𝜏 ]

Where R() is the reward of the trajectory
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Reinforcement Learning Intuition

• In RL, we are not using supervised or unsupervised machine 
learning. We don’t know the ‘correct’ answer through 
supervision. So where to start? Answer: Trial random actions

Pong
Up-Down-Up-Down-Up-Up

Down—Down-Up-Up-Down



𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)

Down—Down-Up-Up-Down

Up—Down-Up-Down-Down

Supervised ML
Reinforcement Learningmaximize

Bad

Good

Good

Bad

maximize log 𝑝 𝑦𝑖 𝑥𝑖)

maximize -1*log 𝑝 𝑦𝑖 𝑥𝑖)
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Discrete Landau Model

2D Discrete Landau Model

• Simple discrete time-
dependent Landau 
formulation for 
ferroelectrics

• Code is available at 
github.com/ramav87/
FerroSim

F = 

𝑖,𝑗

𝑁

Τ𝛼 2 𝑝2 + Τ𝛽 4 𝑝4 − 𝐸𝑙𝑜𝑐𝑝 + 𝐾

𝑘,𝑙

𝑝𝑖,𝑗 − 𝑝𝑖+𝑘,𝑗+𝑙
2

𝑑𝑝𝑖𝑗

𝑑𝑡
= −𝛾−1 𝛽𝑝𝑖𝑗

3 + 𝛼𝑝𝑖𝑗 + 𝐾

𝑘,𝑙

ቁሺ𝑝𝑖𝑗 − 𝑝𝑘𝑙 − 𝐸𝑙𝑜𝑐

Kalinin, Ziatdinov, Vasudevan (JAP) (2020)
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FerroSIM: Simulator for defects in ferroelectrics

• 2D Discrete Landau Model

Uniaxial
𝐹𝑢𝑛𝑖𝑥𝑖𝑎𝑙

=

𝑖,𝑗

𝑁
𝛼1
2

𝑝𝑖,𝑗
2 +

𝛼2
4

𝑝𝑖,𝑗
4 + 𝐾

𝑘,𝑙

ሺ𝑝𝑖,𝑗 − 𝑝𝑖+𝑘,𝑗+𝑙)
2 − 𝐸𝑙𝑜𝑐𝑝𝑛

Tetragonal or Rhombohedral 

𝐹 =

𝑖,𝑗

𝑁

𝛼1 𝑝𝑥𝑖𝑗
2 + 𝑝𝑦𝑖𝑗

2 + 𝛼2 𝑝𝑥𝑖𝑗
4 + 𝑝𝑦𝑖𝑗

4 + 𝛼3𝑝𝑥𝑖𝑗
2 𝑝𝑦𝑖𝑗

2 + 𝐾

𝑘,𝑙

ሺ𝑝𝑖𝑗 − 𝑝𝑖+𝑘,𝑗+𝑙)
2 − 𝐸𝑙𝑜𝑐𝑥𝑝𝑥𝑖𝑗 − 𝐸𝑙𝑜𝑐𝑦𝑝𝑦𝑖𝑗

Squareelectric

In the ‘Square electric’ we essentially have decoupled polarization
𝐹𝑠𝑞𝑢𝑎𝑟𝑒

= 

𝑖,𝑗

𝑁
𝛼1
2

𝑝𝑥𝑖𝑗
2 +

𝛼2
4

𝑝𝑥𝑖𝑗
4 + 𝐾

𝑘,𝑙

𝑝𝑥𝑖𝑗 − 𝑝𝑥𝑖+𝑘,𝑗+𝑙

2
+

𝛼1
2

𝑝𝑦𝑖𝑗
2 +

𝛼2
4

𝑝𝑦𝑖𝑗
4 + 𝐾

𝑘,𝑙

𝑝𝑦𝑖𝑗 − 𝑝𝑦𝑖+𝑘,𝑗+𝑙

2
− 𝐸𝑙𝑜𝑐𝑦𝑝𝑦𝑖𝑗

In all cases, 
𝐸𝑙𝑜𝑐 = 𝐸𝑒𝑥𝑡 + 𝐸𝑑𝑒𝑝 + 𝐸𝑑 𝑖, 𝑗

Note also that Edep is calculated as αPavg
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FerroSIM: Add defects to lattice and observe P map

• And easily add defects (changes to local E)

Moving defects to see how they affect the 
ground polarization state
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DQN for defect manipulation -> maximize curl

Initial Final

Agent trying to cluster defects
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Another app: Molecular Dynamics Environment

Xv = 1E-4 , Zv = 14.5 

Xv = 5.2, Zv =  12.4

Xv = 14.5 , Zv = 3.1
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RL Environment for Atomic Fabrication: MD exploration
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State: Si dopants in graphene

Goal: Move dopants together by 

changing momentum in MD

Vasudevan et al. (unpublished)
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Results: SVPG

Vasudevan et al. (unpublished)

Runs of trained agents
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Results: Policy Inspection

Vasudevan et al. (under review)

• Highly stochastic environment leads 

to conservative policies

• Z-component is not a delta function 

around zero- implies small z 

component is necessary to move 

dopant (also backed up by 

theoretical work)

• Policy inspection may become a 

useful tool to understanding the 

dynamics of the system -> relevant 

dynamics are learned, somewhat 

simplifying the problem.
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RL: Defect engineering
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Automated Exp.: Manipulations Adaptive Sampling
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FerroBOT: Automated manipulation of domain walls

Kelley et al., ACS Nano 14, 8, 10569–10577 (2020).

Large Bias
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FerroBOT: Recent Extensions

Kelley et al., (in press)
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Step

Kelley et al., (in press)

Triggered stimulus to manipulate domain walls 
automatically

Image-based feedback modes



21

RL: Defect engineering

Outlines

Automated Exp.: Manipulations Adaptive Sampling
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Bayesian Optimization

N. de Freitas et al., Taking the Human Out of 

the Loop: A Review of Bayesian Optimization , 

Proceedings of the IEEE 104, 148 (2015)

• We have some 
measurements in space 
X, and we want to 
maximize some property 
f(X). 

• Generalizes to higher 
dimensions

• Recently has become 
computationally 
tractable
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Acquisition Functions

Probability of Improvement 
Acquisition Function

1. Confidence bound: simplest 
possible - just take the upper 
confidence bound from the 
prediction

2. Probability of Improvement: 
Integral from current 
functional maximum to 
upper limit of distribution as 
test point

3. Expected Improvement: 
Instead of probability of 
improvement, we want to 
maximize the expected 
increase in the function 
value

4. There are (always) more…
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Efficient sampling required!

• Large spectroscopic datasets take too long to capture: efficiency in sampling required. 
Can be done via Bayesian optimization.

Data preprocessing

Upload to dgx for 
Bayesian Optimization

Provide list of new 
measurement 

conditions

Measure a batch 
of points
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Spectroscopy on a ferroelectric film

Can image the domain structure with the microscope -> 4 minutes
Spectroscopy – obtaining spectra pixel by pixel – can take 2-24 hours depending on type of 
measurement.



2626

Automated Experiment example
Measured Loop Areas GP Prediction GP Uncertainty

R. Vasudevan et al., arXiv:2011.13050 (under review)
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Loop Area (ground truth)
GP Prediction (400 px)

OverlaidLoop Area >0.8
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Deep Kernel Learning: Better priors means better results

Utilize a CNN or just directly image pixels to 
better determine next sampling locations

Vasudevan et al. ACS Nano, 2021
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Computational Needs: Streaming, Near Edge and HPC

Instrument

“Streaming” Edge

FPGA*

Jetson 
Nano

~64 MB/s ~ MB-GB/run

GPU “Far” Edge

DGX-2
16 GPUs

Summit
~27000 GPUs

Leadership Class

Feedback for control

~ 10+GB/job

Simulations and Model 
Refinements
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