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Scanning Transmission Electron Microscopy

• Modern commercial 

instrument offers:

• 1 nA into a 1 Å probe

• 9000 EEL spectra/sec

• Atomic-resolution 

STEM images at 100 

nsec / pixel

• Atomic-resolution TEM 

images at 3000 fps

• Routine acquisition of 

O(10 GB) datasets

• Specialize instruments 

go (much) faster Electron Energy 

Loss Spectrometer

annular dark field integrating detector
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1 atom wide (0.1 nm)  beam is scanned

across the sample to form a 2-D image

(Elastic Scattering ~ "Z contrast")
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4D STEM Data: I(rx, ry, kx, ky)

direct e- camera

• Read out a fast, pixelated camera at every position of a STEM probe 

scan

• Revolutionizing materials TEM & STEM

• Ultrafast cameras at UW-Madison and LBL

• TB+ datasets are routine, requiring large scale computing and AI / ML

Maximum Readout Speed

Readout size frames per second

1024×1024 1,900

512×512 7,380

256×256 26,000

256×128 49,000

256×64 86,000
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TANSTAAFL

• ML / AI methods always rely on some form of prior 

information about 

• Unsupervised learning:

• prior information about the mathematical structure of the data

• applications in distortion correction, denoising, spectral 

unmixing, and signal clustering

• Supervised learning:

• prior information from example, already analyzed data

• applications in finding features in images, connecting images 

and spectra to physical quantities of interest

• Examples of both as they apply to STEM
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There ain’t no such thing as a free lunch



Distortion Correction in Scanning Images

• Imperfect instruments

• Scanning images are subject to distortion 

arising from instrumental instabilities

• Distortions can be corrected from a series of 

images if the object is unchanged and the 

distortions are random

• More prior information:

• Higher frequency distortions are smaller in 

magnitude (e.g. electronic jitter vs floor 

vibrations)

• Lowest frequency distortions are rigid motion of 

the sample + shear of the image

• Higher frequency distortions have zero mean 

over many images
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Distortion Correction by Non-Rigid Registration

Raw series Non-rigid aligned series
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Benjamin BerkelsAndrew Yankovich Nat. Comm. 5, 5144 (2014) 

• Average image has high SNR and low distortion

• Enables measurement of atom positions with <1 

pm precision

average image
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Pt on SiO2 Catalyst

• Catalysis happens 

preferentially at 

corners and edges of 

nanoparticles

• Atoms at corners and 

edges lack some 

neighboring atoms

• They have shorter 

bonds that atoms 

inside the particle

• We can measure 

those bond lengths 

more accurately that it 

is possible to calculate 

them.

Nat. Comm. 5, 5144 (2014) 7



Non-local Means Denoising

• Prior information: 

• High-resolution images of crystals contain many repeating features

• Electron detection experiments are corrupted by Poisson noise
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N. Mevenkamp, Adv. Struct. 

Chem. Imaging 1, 3 (2015).

Benjamin 

Berkels
Niklas

Mevenkamp

• Result:
• Non-local means with 

periodic block matching 

• Similarity measure for 

Poisson noise

• Better performance than 

state-of-the-art BM3D.



Dimensionality Reduction

• Prior information: data occupy a 

subspace in the high dimensional 

vector space of the set of possible 

measurements

• Applications:

• denoising by throwing away the signal 

outside the subspace

• spectral unmixing to discover prototype 

signals or for mapping

• Methods for 2D matrices like PCA are 

widely used, but do not exploit the full 

structure of higher-dimensional data
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Data occupying a 2D 

subspace of a 3D 

vector space

subspace basis 

vectors a and b

M. Bosman, Ultramicroscopy 106, 1024–32 (2006)



×1 ×2

×3

𝑋 = 𝑆 ×1 𝑈
1 ×2 𝑈

2 ×3 𝑈
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Tensor Singular Value Decomposition

• Generalization of SVD to work on 

tensors of any shape

• Can be applied to arbitrary high 

dimensional data while maintaining 

structure along all dimensions.

• Preserves inherent structure in the 

data, aiding learning when the data 

are highly redundant, like atomic-

resolution 4D STEM data

• Iterative estimate, not closed-form 

solution like 2D SVD.

• Find low rank ground truth from 

noisy input data.

…
…

𝑘𝑦

𝑘𝑥

𝑘

𝑟𝑥
𝑟𝑦

𝑘

Noisy tensor 

from 4D STEM 

data

Low rank 

noiseless 

ground truth.

=

Unfold the k 

dimensions with 

less periodicity

Noise

Method developed by Rungang Han and Arun Zhang:

IEEE Transactions on Information Theory 64.11 (2018): 7311-7338.

Journal of the American Statistical Association 114.528 (2019): 1708-1725.
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Noise
= ×

𝑋 = 𝑆 × 𝐿𝑇



Tensor SVD Performance: Simulated 4D STEM

0.5 nm

20 mrad

PSNR = 22 dB PSNR = 39 dB

Input size: 1.6 GB Processing time: 525.6 sec 
11 C. Zhang, Ultramicroscopy 219, 113123 (2020); DOI: 10.1016/j.ultramic.2020.113123

• Processing time on a desktop with moderate 

computing power (single Xeon E5-2603 CPU).

Experiments: SrTiO3 [100]

1 nm

20 mrad

Input size: 2.8 GB  Processing time:538.9 sec

Simulations: Si [110] dislocation core



Tensor SVD Improves Symmetry Information

• Symmetry STEM is a new method to extract crystallographic point symmetries from 4D STEM data.

• Noisy 4D STEM data do not report the correct 4-fold symmetry for Sr sites, but denoised data do.

12 M. Krajnak, J. Etheridge, Proc. Natl. Acad. Sci. 117, 27805–27810 (2020).



Comparison to Other Denoising Methods

• Tensor SVD is tested against non-local principal component analysis 

(NLPCA), block matching and 4D filtering (BM4D), and matrix PCA.

• Tensor SVD has the best or close to the best denoising performance.

• Tensor SVD is fast and suitable for multi-GB hyperspectral data.

1 nm

Noisy Tensor SVD NLPCA BM4D Matrix PCA Truth

1.0 s 780 s 2493 s 0.2 s Lower input noise

Higher quality 

denoise output

Processing 

Time:

Input size: 10.0 MB

Nanotechnology 27.36 (2016): 364001.

IEEE transactions on image processing 22.1 (2012): 119-133.13



Supervised Learning with Neural Networks

• Prior knowledge is example data, labeled with the result of the 
analysis

• For STEM, training data can come from simulations

• Limits of the resulting network are not very well determined
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CBED patterns changing with sample composition and 

thickness. C. Ophus, Appl. Phys. Lett. 110, 063102 (2017).

Determining sample thickness from 4D STEM data Finding atomic column locations in HRSTEM images



Simulated Training Data for CNN

• Use multislice simulations to generate 

automatically labeled training data:

• Cover a wide range of possible experiment 

conditions in simulations, including 

thickness but also crystal tilt

• Augment the images after simulations by 

adding noise, and distortions including 

shift, zoom, rotation, shear, etc.

• Transfer learning: 

• use a vgg-16 network pretrained to 

recognize features in natural images

• retrain just the fully connected final layers 

at first, then tweak the convolutional layers 

only at the end

• Full training data set is about 750 GB
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Ideal PACBED PACBED with tilt

After random image augmentation



Feature Identification Successes and Failures

• RMS deviation for experimental data on the same 

crystal and orientation is ±1 nm

• Larger thicknesses and more complicated image 

features work less well.

• Network fails for thicknesses outside training data set.

• Network fails for other crystals or even other 

orientations of the same crystal.
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Atom Finding: A Common Problem

Lin’s AtomSegNet
Scientific Reports 11.5386 (2021): 1-15

• Functionalities: atom segmentation, noise reduction, 

background removal, and super-resolution 

processing.

• Trained on 15 crystal lattices (e.g. SrTiO3, graphene) 

Ziatdinov’s AtomNet

ACS Nano 11.12 (2017): 12742–12752

• Functionalities: atom segmentation, 

detecting atom species and defects.

• One trained on crystal lattices (e.g. SrTiO3), 

another trained on hexagonal lattices.

Ziatdinov’s AtomAI
https://github.com/ziatdinovmax/atomai

• Pytorch-based package for training new models for new problems

• We trained a new U-net model on 5 crystal lattices using AtomAI

Atomic column coordinatesInput Output

FCN

17



Which Model is “Best”?

• We wanted to use the best network with 

the least investment of time, but we 

found no way to evaluate network 

performance outside their own training 

and test data.

• Created a benchmark data set with 

varying image quality:

• In simulations, vary pixel size, contrast, 

Poisson noise level, scan distortion

• In experiments, vary pixel size, spatial 

resolution, electron dose

• WS2 and SrTiO3

• ~40  experimental images of various 

crystal lattices, defects, interfaces

• DOI:  10.18126/e73h-3w6n
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Model Performance vs Image Quality

• Define acceptable 

performance as ID-recall 

> 0.90, ID-precision > 

0.95 and Δd < 0.3 Å

• Larger blue polygons 

Ziatdinov’s model is more 

forgiving of poor image 

quality

• Potential trade-off 

between model overall 

performance and general 

applicability

SrTiO3 WS2
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Applicability Outside Training Crystals

• Models applicable for most crystal lattice, 

defects, interface, etc.

• Poor cases for Lin’s model due to low SNR

• Poor cases for Ziatdinov’s model including 

FPs in background, TNs in areas of varying 

contrast and overlapping atoms.  
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Toward a More General Network

• Used the AtomAI framework to train a network on simulated images from 5 

crystal lattices, plus augmentation

• More general than Ziatdinov model while maintaining robustness against 

image quality.
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Making Materials ML FAIR

•Findable

•Accessible

•Interoperable

•Reusable
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• At least in my corner of materials 

science, ML models are not FAIR

• Easy find (Github) but hard to run

• Prior knowledge / training data is often 

unspecified or unavailable

https://www.force11.org/group/fairgroup/fairprinciples

M. D. Wilkinson, The FAIR Guiding Principles for 

scientific data management and stewardship. Sci. 

Data 3, 160018 (2016). DOI: 10.1038/sdata.2016.18



FAIR Data and Models

• Tools for distributing data like 

figshare and Materials Data 

Facility are well developed

• Non-rigid registration: 

10.6084/m9.figshare.12592466.v1

• Non-local denoising: 

10.6084/m9.figshare.12592457.v1

• tensor SVD: 10.18126/vh9q-i1l6

• 4D STEM CNN: 10.18126/4nm2-

0g70

• Atom finding test data: 

10.18126/e73h-3w6n

• Need to be more widely used

• Tools for software exist and are 
widely used

• NRR and tensor SVD have python 
modules compatible with 
HyperSpy

• Non-local denoising and the 4D 
STEM CNN are available on 
Github

• How often does research-grade 
software off Github actually 
work to solve a problem?

• How often can you test the 
software on the data used to 
develop it?
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Foundry Infrastructure for Materials ML

Data Provider Models / Functions

API layerAPI layer

Data Publishers Model Publishers

Consumers

Science!

From foundry import Foundry
f = Foundry()

X,y = f.load(“dataset1”, v=“1.0”)
y_pred = f.run(“model1”, v=“1.0”, X)

f.data.publish(“./” 
“dataset1”, v=“1.1”)

f.model.publish(“./” 
“model1”, v=“1.1”)

• Models run locally or on distributed endpoints

• Capabilities to pull datasets to desired location 

or move compute to desired locationDataset Function

• Containerized ML models permanently 

associated with data sets

• Radically reduced barriers to reuse, meta-

studies, benchmarking, and more

• Atom finder dataset available now

• DOI: 10.18126/e73h-3w6n

• Standard dataset description interface

• Queriable format (hdf5)

• Highly accessible metadata

Dane Morgan, Paul Voyles, 

Michael Ferris, Marcus 

Schwarting, Ben Blaiszik



Summary

• STEM data are growing in rapidly in size and complexity

• ML / AI methods are essential and developing quickly

• Example applications:

• distortion correction

• non-local denoising

• low-dimensional representations for tensor data

• determining sample characteristics directly from 4D STEM data 

• atom finding in high-resolution images

• Data and models are all available from the bibliography at 

tem.msae.wisc.edu

• TANSTAAFL and make it FAIR
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