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Automated x-ray PDF analysis and ML modeling



2

Pair Distribution Function Overview

• Automated Data reduction 

• Consistency checks for data quality

• ML modeling 
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Total Scattering



X-ray and neutron diffraction from glasses and liquids.
C.J. Benmore. Comprehensive Inorganic Chemistry III, Book Chapter, 2021.

Access to High Momentum Transfers
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Automated PDF analysis (LDRD)

Globus - Parsl/Balsm Infrastructure - GSAS-II

Set up .gpx file at 

beginning of experiment

Outputs PDF

Within a few seconds

of measurement

Credit: Darren Govoni

Software engineer
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Other commonly used PDF 
software

PDFgetX2: a GUI-driven 
program to obtain the pair 
distribution function from X-
ray powder diffraction data

GudrunX: Routines for 
reducing total scattering data

PDFgetX3: a rapid and highly 
automatable program for 
processing powder diffraction 
data into total scattering pair 
distribution functions

Most x-ray and neutron 
PDF courses neglect 
importance of corrections 
and experimental set up.

Not all PDF analysis software is the same…
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3D structural 

molecular model

What do you want from your data ?

Amorphous vs. Crystalline 

Peak Positions Intra- & Inter-molecular structures

Coordination numbers

Phase Identification

Q-calibration

Polarization…

Absolute normalization

Quantitative Corrections

Meets all consistency checks...
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Area detector corrections for high quality 

synchrotron X-ray structure factor measurements. 

L.B. Skinner, C.J. Benmore, J.B. Parise. 

Nuc. Instr. & Meth. A 662 (2012) 61.

Detector Corrections…
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Accuracy counts…
Consistency checks…

• Automated GSAS-II analysis

• Check low-r limit agrees with 

bulk density line.

• Fourier back-transform can 

assess level of systematic error –

only implemented in GudrunX
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Other consistency checks…

Example 1. User data on same low-Z sample at different temperatures

measured on different diffractometers at different energies
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PDFgetX3 PDFgetX3

Effects of approximations used in automation…

Example 2. User data on same low-Z sample analyzed using different software
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Example from Neutron and X-ray diffraction studies of liquids and glasses

H.E. Fischer, A.C. Barnes, P.S. Salmon. Rep. Prog. Phys. 69 (2006) 233.

The Fourier back-transform

“A much better indication of the overall accuracy, including systematic errors, is given by the

Structure in the correlation function at low-r below the first true peak, provided the data have 

not been massaged before publication to conceal their true quality.”

What have we learned from 60 years of diffraction studies ?

A.C. Wright, J. Non-Cryst. Solids 179 (1994) 84.
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Aerodynamic levitation & Laser heating
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Local structure

Probing Melts, Glasses and Amorphous 
Materials: Neutron Scattering in Earth Sciences. 

C.J. Benmore & M.C. Wilding. Elements, 2021.
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Underlying principle: 
If thousands of AIMD simulations are performed, some will agree with the 

diffraction data – how best to get there is a computer science problem !

Experimentally Driven Automated Machine-Learned 

Interatomic Potentials
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Gaussian Approximation Potentials I
A. Bartok & G. Csanyi, Int’l J. Quantum Chemistry 2015

Atomistic Modeling 

& the Potential Energy 

Surface

• Pair and N-body 

interactions

• GAP Parameters fitted 

from DFT

• Run larger box classical 

MD simulations

• Extract structure, density, 

diffusion constants, 

viscosity, conductivity…



Gaussian Approximation Potentials II

Machine Learning method

• Direct functional between the atomic 

configuration and energy

• Only uses reference electronic structure

• Initial multi-year effort to develop a general 

model for a single material ! 

Challenges

• Sampling the correct training data to probe 

property of interest

• Finding the right hyperparameters for the 

chosen method of fitting for required model 

accuracy i.e. energy meV/atom.

• Local minima for metastable materials

Deringer et al. Nat. Comm. volume 11 (2020) 5461

Smooth Overlap of Atomic Positions (SOAP)

Rcut =5Å

Silicon

Bartók et. al., Phys. Rev. X, 8 (2018) 041048



S. Dasgupta, Theoretical Computer Science  

412, 1767 (2011)

Active Learning: Testing and training

• Large pool of unlabeled data 

• Active sampling exploits the 

underlying patterns embedded in the 

data to guide supervised learning

• Supervised ML model arrives at an 

accuracy with minimum training 

datasets



Hand picked vs Active learning

260 training configurations
11 iterations

0.78. % Sample size

950 training configurations
>30 iterations (sleepless intern)

=  2.90 % Sample size

Melt- quench 
protocol

Random 
particles in cubic 

box melted at 
3600K

Quenching to 
300K at a rate of 

100K/ps

Glassy dataset 
sampled at 300K

Glassy HfO2 calculated 33,000 atomic configurations
AIMD (NVT) VASP



From DFT to classical MD for HfO2

• Classical MD x64 system size of DFT

• x100 longer simulations with ML

• Quench rate of 1.0 K/ps



Validation with experiments

Active Learning Driven Machine Learning Inter-Atomic Potentials Generation.
G. Sivaraman et. al. npj Computational Materials, 2020.

DFT (VASP) to MD (LAMPS, NVT) : Liquid HfO2 at 2900oC



• X-ray data drives construction of effective

classical pair potential from DFT

• The experimentally synthesized structures 

are not necessarily the lowest energy 

structure 

• AL trains atomic and electronic structural 

models in near ab initio accuracy with PDF

• Highlights need for accurate PDF data 

Experiment Driven Automation



Simulated melting point is 

within 1% of experiment 

“Global” Machine Learnt Potentials

G. Sivaraman et. al. 
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• Experimental PDF data drives active learning algorithm

• Tests AIMD simulations using a Gaussian Approximation Potential

• Classical GAP MD simulations reproduce all the experimental phases with 

near ab initio precision.

• Larger box size allows quench rates of 1.0 K/ps not accessible via AIMD

• The method significantly reduces model development time and human effort

• Potential limitations in future for large amount of kernels.

New machine Learning Scheme for Disordered Materials
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Alternative M approaches

• Other ML potentials for molten salt simulations  e.g. Li et al. Cell Rep. Phys. Sci., (2021)

• GAP approach superior to neural network based models when dealing with small quantities 

of training data that are computationally expensive

• Li et al. required 112,000 training samples.

GAP model used ~600 in Sivaraman et al. J. Phys. Chem. Lett. 2021.

Future

• Experimental consistency data analysis checks are essential

• Metadynamics, complex systems, oxidation states…. 



26



27

Deep Potential Generator

Using Neutral Networks

Construction of accurate and 
transferable ML models of the 

Potential Energy Surface

e.g. liquid Mg-Al alloy

Zhang et al. Phys. Rev. Mat.
3 (2019) 0233804
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Na+ diffusion coefficient

Ionic conductivity


