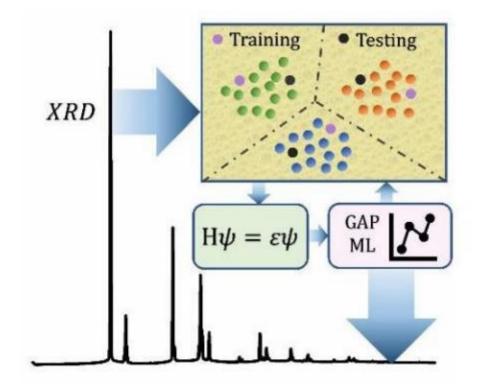


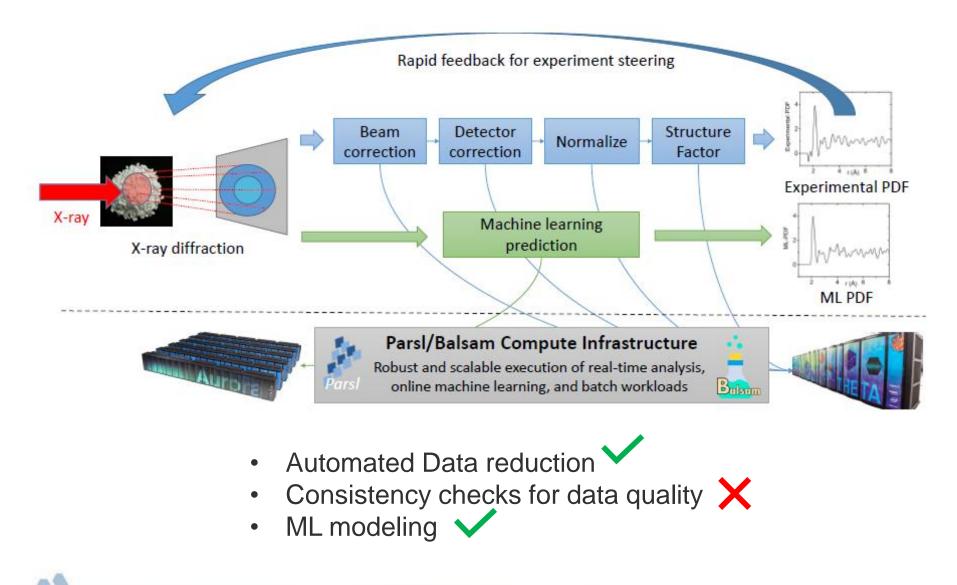
Automated x-ray PDF analysis and ML modeling



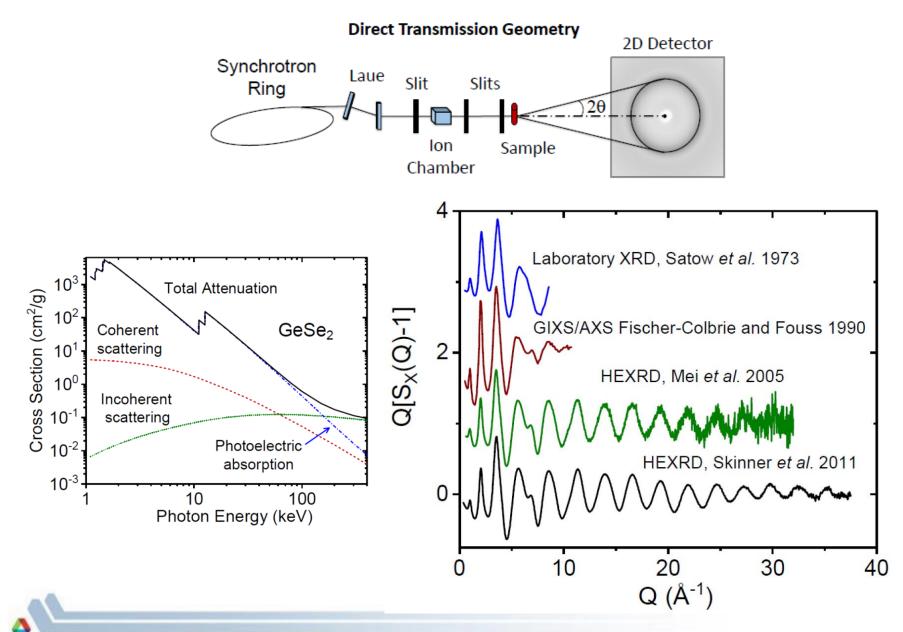
Chris Benmore (XSD)

K. Chard (DSL), G. Sivaraman (DSL), R. Vescovi (DSL), R. Chard (DSL), T. Uram (ALCF), M. Salim (ALCF), Á. Vázquez-Mayagoitia (CSD), M. Stan (AMD), R. von Dreele (XSD), L. Gallington (XSD), G. Csányi (U. Cambridge)...

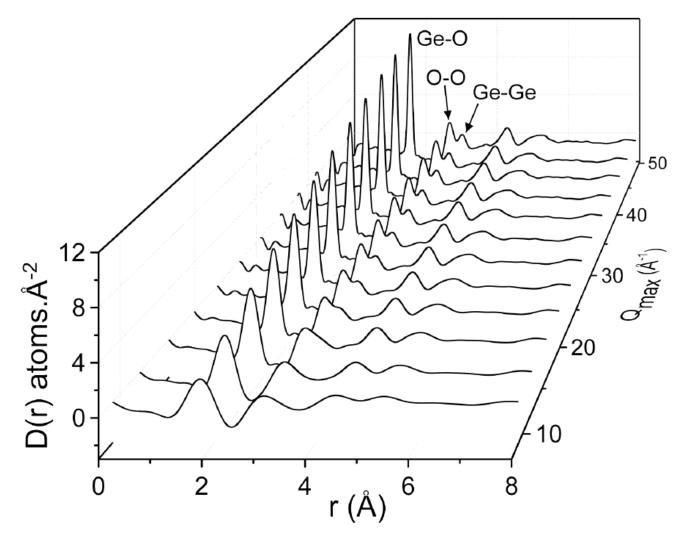
Pair Distribution Function Overview



Total Scattering



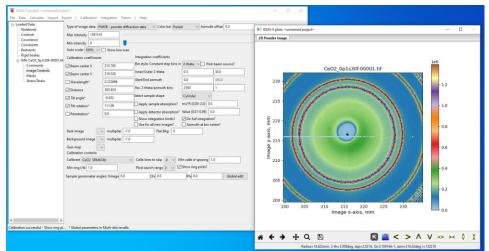
Access to High Momentum Transfers



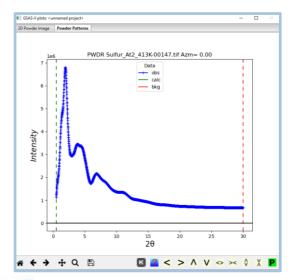
X-ray and neutron diffraction from glasses and liquids. C.J. Benmore. *Comprehensive Inorganic Chemistry III, Book Chapter, 2021.*

Automated PDF analysis (LDRD)

GSAS-2



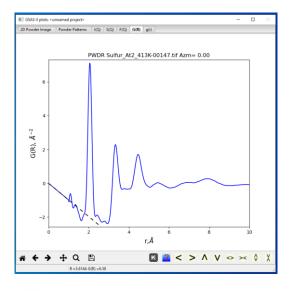
Globus - Parsl/Balsm Infrastructure - GSAS-II



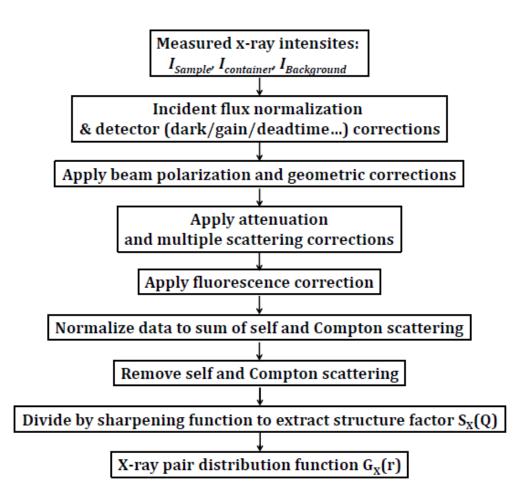
Set up .gpx file at beginning of experiment

Outputs PDF Within a few seconds of measurement

Credit: Darren Govoni Software engineer



Not all PDF analysis software is the same...



Other commonly used PDF software

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data

GudrunX: Routines for reducing total scattering data

PDFgetX3: a rapid and highly **automatable program** for processing powder diffraction data into total scattering pair distribution functions

Most x-ray and neutron PDF courses neglect importance of corrections and experimental set up.

6

What do you want from your data?

Phase Identification

Amorphous vs. Crystalline

Peak Positions

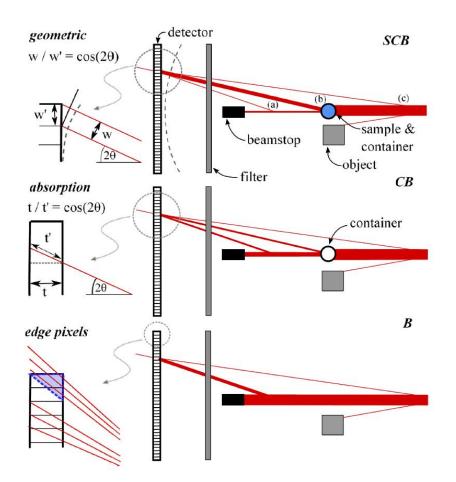
Q-calibration Polarization... 3D structural molecular model

Coordination numbers

Intra- & Inter-molecular structures

Absolute normalization Quantitative Corrections Meets all consistency checks...

Detector Corrections...



Area detector corrections for high quality synchrotron X-ray structure factor measurements. L.B. Skinner, C.J. Benmore, J.B. Parise. Nuc. Instr. & Meth. A 662 (2012) 61.

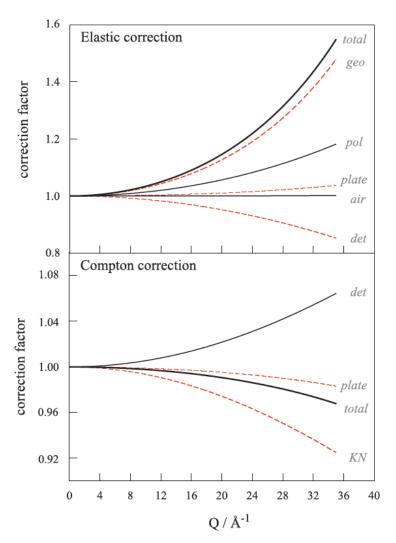


Fig. 6. Top: multiplicative correction factors for a CsI scintillator image plate detector at 115 keV (i.e. the setup at APS beamline 11-ID-C). *Geo*=geometric correction, *pol*=polarization correction, det=detector oblique absorption correction, plate=plate filter correction, air=air absorption correction. Bottom: correction factors to the Compton scattering due to its differing energy (which are additive in *S*(*Q*)). KN=Klein–Nishina quantum mechanical correction to the Compton cross-section.

Accuracy counts...

1 0 Filter en. dep. 0.99

0.95

Klein-

Nishina

0.99

0.93

2

< 0.1

Total

Number of input parameters	dependent	I(Q=25) correction relative to I(Q=0)		% Error in correction		
		SiO ₂	La_2O_3		SiO ₂	La ₂ O ₃
1-4	Sample attenuation	0.99	0.93	2	0.02	0.14
1–4	Fluo. sample attenuation	-	0.79	4	-	0.28 ^a
1	Fluo. detector absorption	-	1.00	1	-	< 0.001
		100 keV	60 keV		100 keV	60 keV
Sample independent corrections						
1	Polarization	1.13	1.38	0.5	0.06	0.14
0	Geometric	1.23	2.04	0.25	0.05	0.13
1	Detector absorption	0.90	0.89	1	0.1	0.1
1	Filter attenuation ^b	1.03	1.11	2	0.06	0.20
Energy dependent Compton corrections ^a						
1	Detector energy dep.	1.05	1.07	1	0.05	0.07

0.02

< 0.005

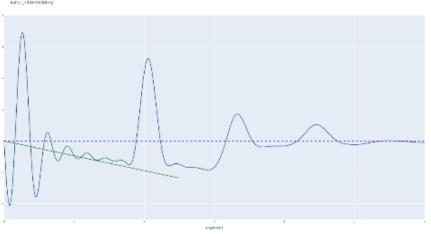
0.34

0.02

0.66

< 0.007

Consistency checks...

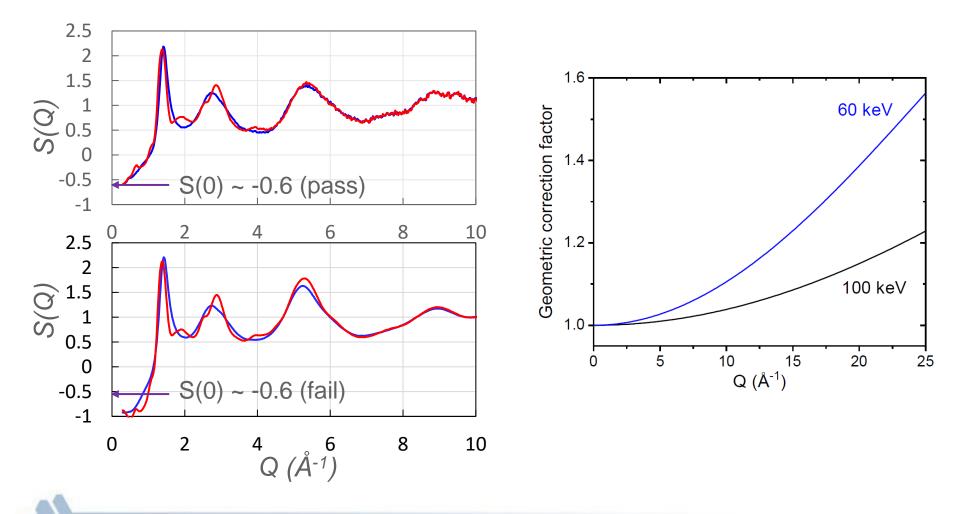


- omated GSAS-II analysis
- ck low-r limit agrees with density line.
- Fourier back-transform can • assess level of systematic error only implemented in GudrunX

9

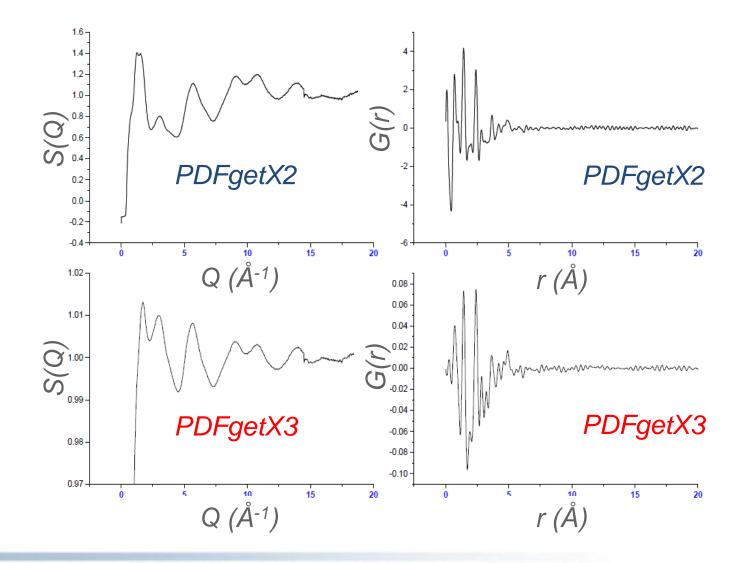
Other consistency checks...

Example 1. User data on same low-Z sample at different temperatures measured on different diffractometers at different energies



Effects of approximations used in automation...

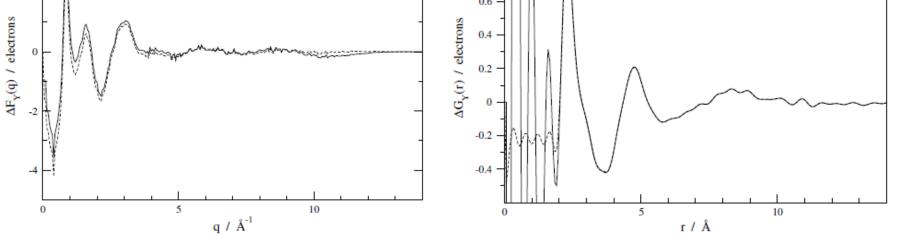
Example 2. User data on same low-Z sample analyzed using different software



The Fourier back-transform

"A much better indication of the overall accuracy, including systematic errors, is given by the Structure in the correlation function at low-r below the first true peak, *provided the data have not been massaged before publication to conceal their true quality.*"

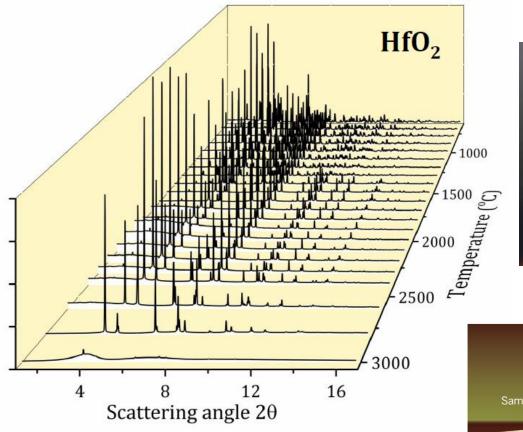
What have we learned from 60 years of diffraction studies ? A.C. Wright, J. Non-Cryst. Solids 179 (1994) 84.

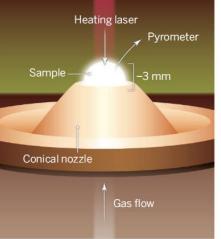


Example from Neutron and X-ray diffraction studies of liquids and glasses H.E. Fischer, A.C. Barnes, P.S. Salmon. Rep. Prog. Phys. 69 (2006) 233.

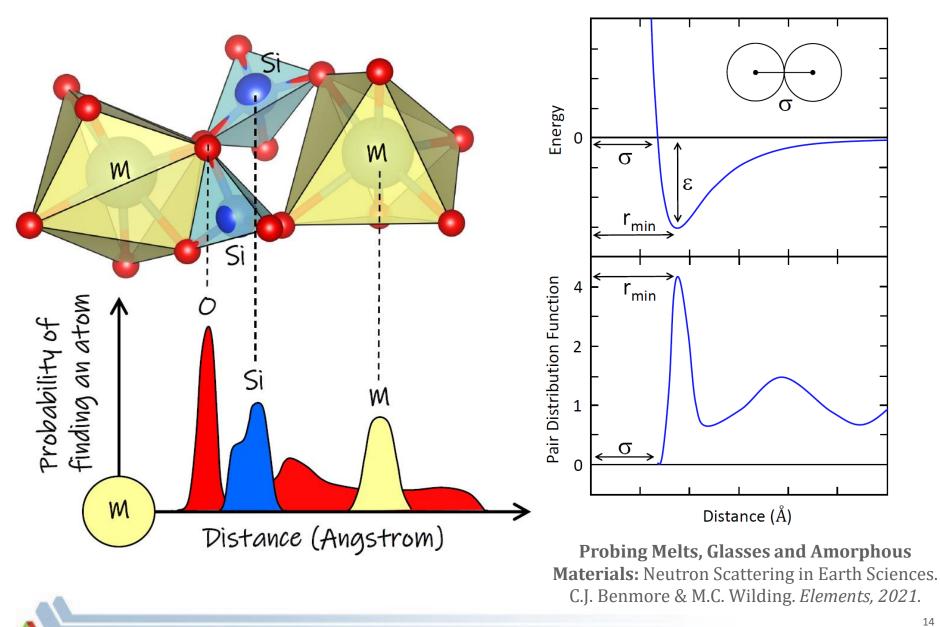
2

Aerodynamic levitation & Laser heating

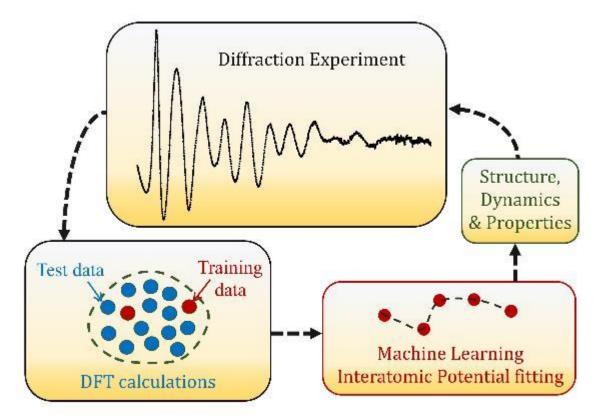




Local structure



Experimentally Driven Automated Machine-Learned Interatomic Potentials

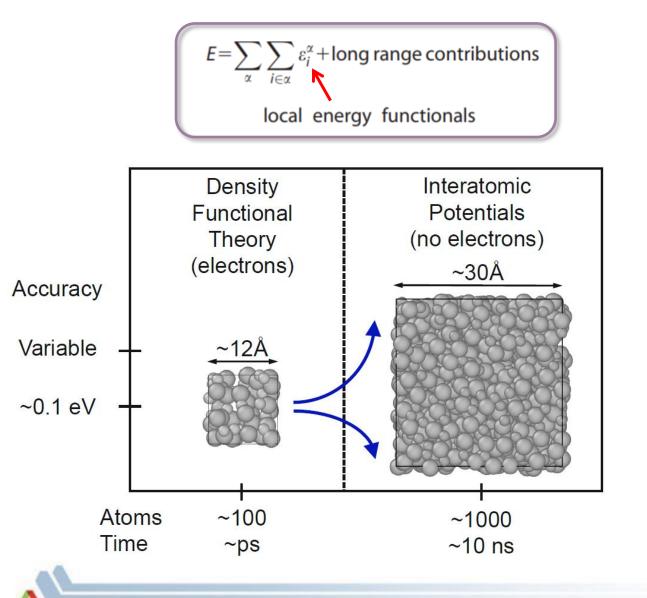


Underlying principle:

If <u>thousands</u> of AIMD simulations are performed, some will agree with the diffraction data – how best to get there is a computer science problem !

Gaussian Approximation Potentials I

A. Bartok & G. Csanyi, Int'l J. Quantum Chemistry 2015



Atomistic Modeling & the Potential Energy Surface

- Pair and N-body
 interactions
- GAP Parameters fitted
 from DFT
- Run larger box classical MD simulations
- Extract structure, density, diffusion constants, viscosity, conductivity...

Gaussian Approximation Potentials II

Machine Learning method

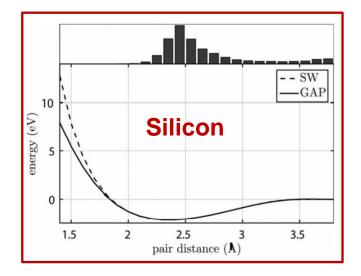
- Direct functional between the atomic configuration and energy
- Only uses reference electronic structure
- Initial multi-year effort to develop a general model for a single material !

Challenges

- Sampling the correct training data to probe property of interest
- Finding the right hyperparameters for the chosen method of fitting for required model accuracy i.e. energy meV/atom.
 - Local minima for metastable materials

Smooth Overlap of Atomic Positions (SOAP)

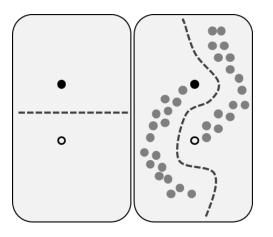
Deringer et al. Nat. Comm. volume 11 (2020) 5461



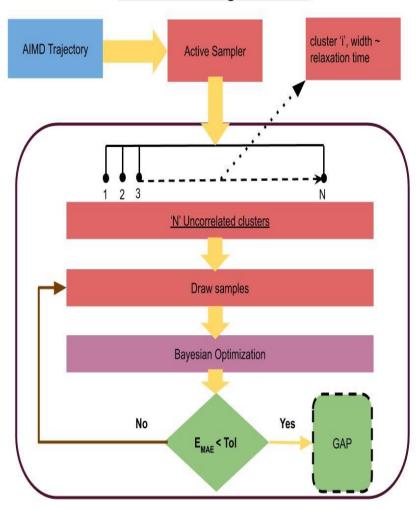
Bartók et. al., Phys. Rev. X, 8 (2018) 041048

Active Learning: Testing and training

- Large pool of unlabeled data
- Active sampling exploits the underlying patterns embedded in the data to guide supervised learning
- Supervised ML model arrives at an accuracy with **minimum** training datasets



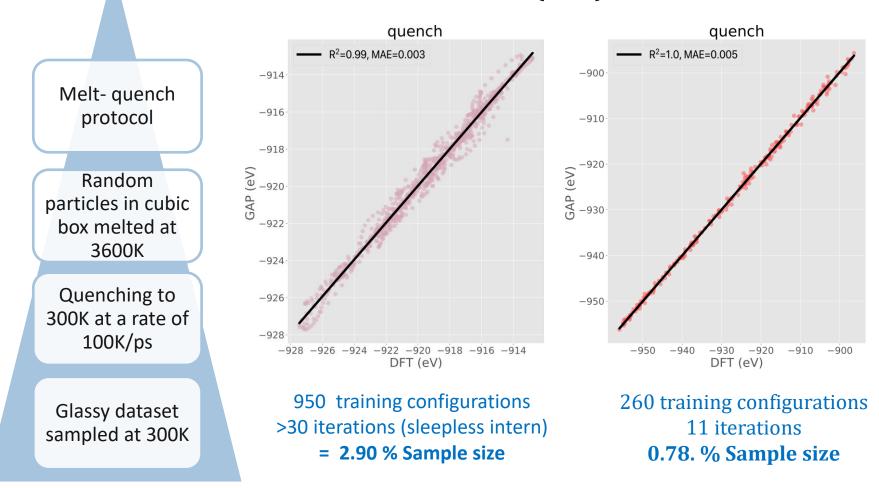
S. Dasgupta, *Theoretical Computer Science* **412**, 1767 (2011)



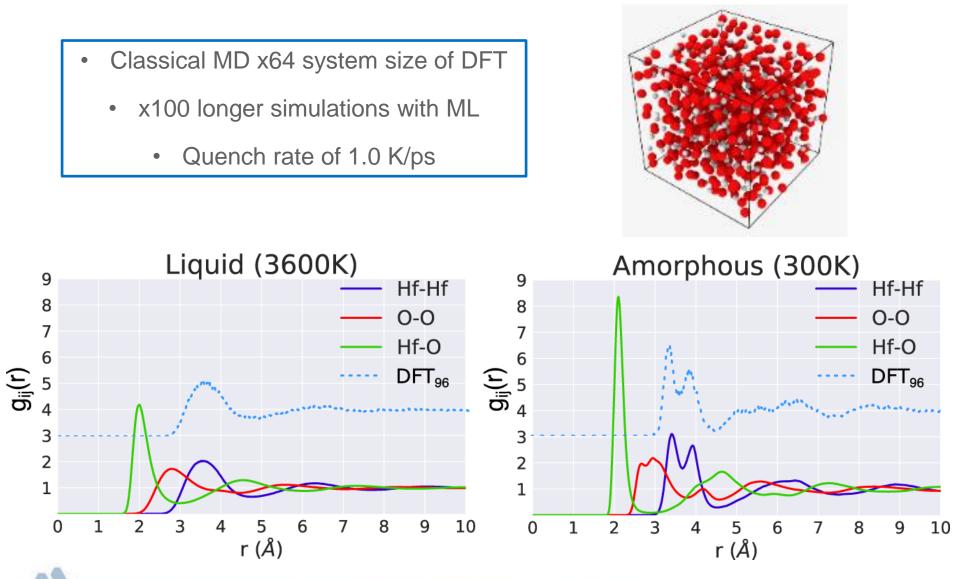
Active Learning Workflow

Hand picked vs Active learning

Glassy HfO₂ calculated 33,000 atomic configurations AIMD (NVT) VASP



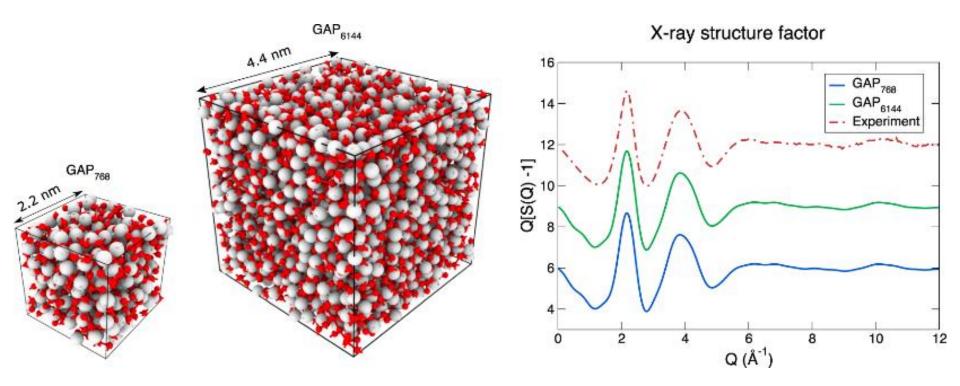
From DFT to classical MD for HfO₂



A

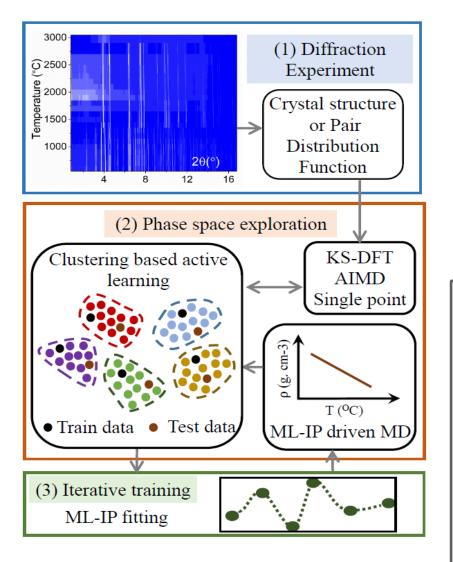
Validation with experiments

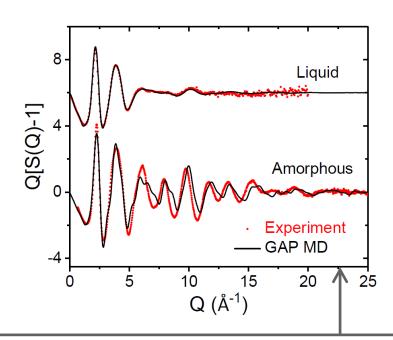
DFT (VASP) to MD (LAMPS, NVT) : Liquid HfO₂ at 2900°C



Active Learning Driven Machine Learning Inter-Atomic Potentials Generation. G. Sivaraman et. al. *npj Computational Materials, 2020.*

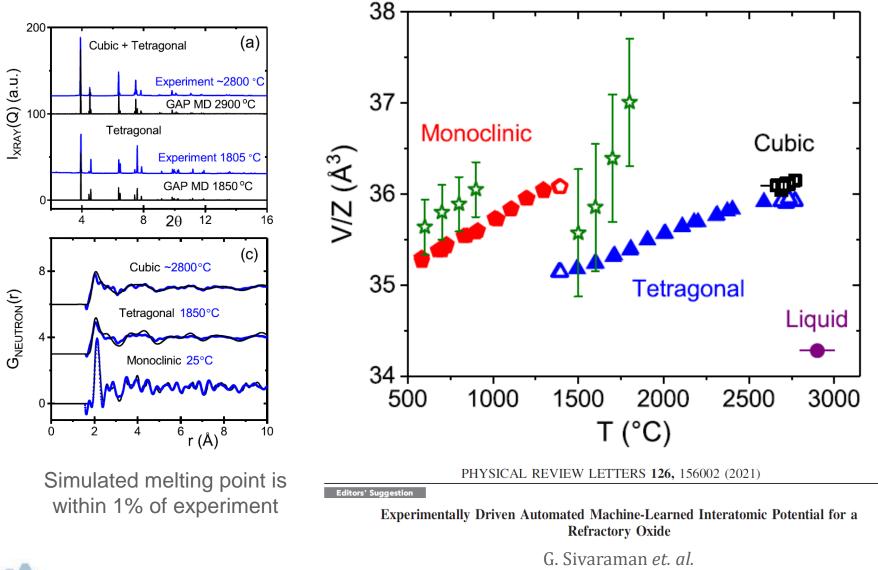
Experiment Driven Automation





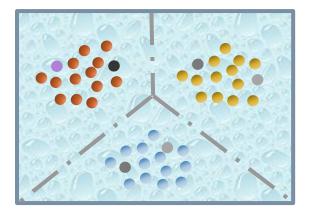
- X-ray data drives construction of *effective* classical pair potential from DFT
- The experimentally synthesized structures are not necessarily the lowest energy structure
- AL trains atomic and electronic structural models in near *ab initio* accuracy with PDF
 - Highlights need for accurate PDF data

"Global" Machine Learnt Potentials



New machine Learning Scheme for Disordered Materials

- Experimental PDF data drives active learning algorithm
- Tests **AIMD simulations** using a Gaussian Approximation Potential
- Classical GAP MD simulations reproduce all the experimental phases with near *ab initio* precision.



- Larger box size allows quench rates of 1.0 K/ps not accessible via AIMD
- The method significantly reduces model development time and human effort
 - Potential limitations in future for large amount of kernels.

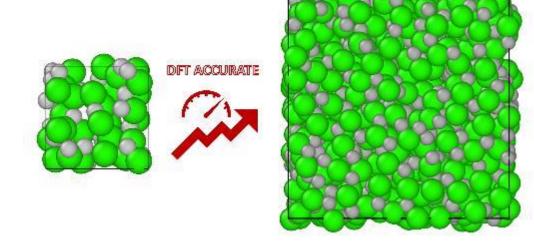
Alternative M approaches

- Other ML potentials for molten salt simulations e.g. Li et al. Cell Rep. Phys. Sci., (2021)
- GAP approach superior to neural network based models when dealing with small quantities of training data that are computationally expensive
 - Li et al. required **112,000** training samples.

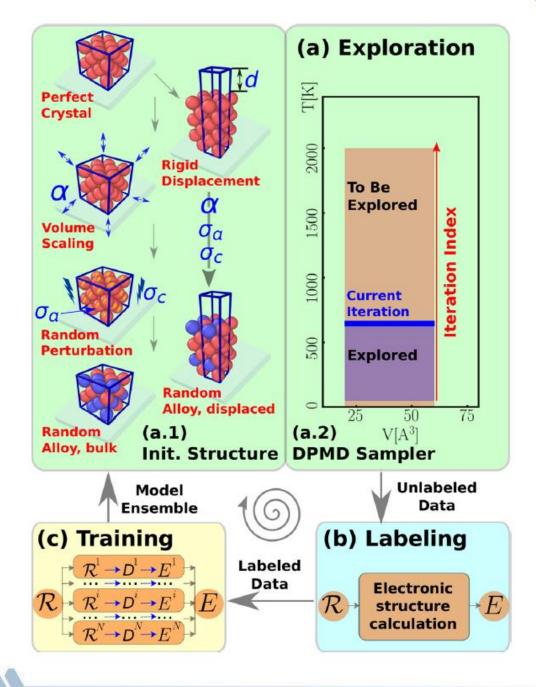
GAP model used ~600 in Sivaraman et al. J. Phys. Chem. Lett. 2021.

Future

- Experimental consistency data analysis checks are essential
 - Metadynamics, complex systems, oxidation states....



<u>م</u>



Deep Potential Generator Using Neutral Networks

Construction of accurate and transferable ML models of the Potential Energy Surface

e.g. liquid Mg-Al alloy

Zhang *et al.* Phys. Rev. Mat. 3 (2019) 0233804

THE JOURNAL OF CHEMISTRY C

J. Phys. Chem. C 2020, 124, 25760-25768

pubs.acs.org/JPCC

Article

DFT Accurate Interatomic Potential for Molten NaCl from Machine Learning

Samuel Tovey, Anand Narayanan Krishnamoorthy, Ganesh Sivaraman, Jicheng Guo, Chris Benmore, Andreas Heuer, and Christian Holm*

