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Overview of accelerator operations

Accelerator	R+D Beam	for	Experimentalists Down	Time

Specialized	R+D	Facilities

Machine	Development	Time Small	single	user	end	stations

Large	experimental	collaborations

Scheduled	Maintenance

Unscheduled	Maintenance



3/24AI for Particle Accelerators, X-ray Beamlines, and Electron Microscopy

Machine learning applications for anomaly detection

Accelerator	R+D Beam	for	Experimentalists Down	Time

Autoencoders	
(unsupervised	and	semi-supervised	

detection	of	fault	precursors)

Inverse	Models
(unsupervised	and	semi-supervised	

detection	of	beamline	errors)
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Detecting faulty magnet power supplies in the APS

• Can we predict if a fault will occur? 
• If yes, can we predict which magnet will fault 

• Components of interest 
• 1320 magnet power supplies / 40 sectors (each has A (green) and B (blue) sections)

https://www.energy.gov/sites/prod/files/2019/04/f62/Advanced-Photon-Source-Upgrade-Project.pdf

Quadrupoles Sextupoles Correctors
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Detecting faulty magnet power supplies in the APS

• Time series data for 1320 magnets
• Power supply cap temperature 

• Current 

• Magnet temperature 

• Reference data (blue) 
• No fault occurs in vicinity, normal operations 

• Test data (orange)
• Magnet failure occurs

• Data is clipped and does not include final minutes 
prior to magnet fault
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Detecting faulty magnet power supplies in the APS

• Time series data for 1320 magnets
• Power supply cap temperature 

• Current 

• Magnet temperature 

• Simplifications 
• Aggregate by each section in a sector: sum 

current across magnets in a sector (80 
inputs/outputs)

• Aggregate by magnet type in sectors: sum current 
across each magnet type in a sector (320 
inputs/outputs)

• Consider magnet current or temperature
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Aggregating by sector

• Overview of dataset
• Reference data (left) used for training and validation 
• Test data (middle) with known anomalies
• Histogram difference (right) 

• Clear visual differences but datasets are qualitatively similar
• Differences between sectors are apparent 
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Machine learning for anomaly detection

• Reconstruct unknown data using an autoencoder
• Train and validate the autoencoder on known good datasets 

• Test on unknown data (may be good or bad)

• Measure the degree to which the autoencoder successfully 
reconstructs the unknown data
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Machine learning for anomaly detection

• Reconstruct unknown data using an autoencoder
• Train and validate the autoencoder on known good datasets 

• Test on unknown data (may be good or bad)

• Measure the degree to which the autoencoder successfully 
reconstructs the unknown data
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Reconstruction of reference data and test data (by sector)

Number	of	faulty	sectors	for	a	given	fault	run.	The	data	
are	sorted	by	the	number	of	faulty	sectors	identified	in	
the	semisupervised case.	

Region	of	convergence	plot	for	the	RMS	error	and	squared	error	
evaluation	metrics.	The	main	plot	shows	the	true	positive	rate	vs	
the	false	positive	rate	as	a	function	of	anomaly	threshold.	Inset	a)	
shows	the	true	positive	rate	as	a	function	of	the	error	threshold	
and	inset	b)	shows	the	false	positive	rate	as	function	of	the	error	
threshold.	Note	that	the	threshold	is	normalized	to	the	peak	value	
of	the	reconstruction	error	computed	on	the	reference	data.	
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Forecasting faults using unsupervised and semi-supervised learning
First indication of an anomaly as a function of the run time for the fault 
data using the RMS error metric. Red is the data used to tune the 
detection threshold while blue is the final test data that is not used in 
any of the training or parameter tuning. The dashed lines represent the 
unsupervised case while the solid line is the semisupervised case. 

First indication of an anomaly as a function of the run time for the fault 
data using the squared error metric. Red is the data used to tune the 
detection threshold while blue is the final test data that is not used in 
any of the training or parameter tuning. The dashed lines represent the 
unsupervised case while the solid line is the semisupervised case 
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Inverse models for diagnostics

• Inverse models as a diagnostic in a 
supervised fashion
• Direct comparison between 

predicted settings and actual settings 
informs operations of a potential 
anomaly with that magnet
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Inverse models for diagnostics

• Inverse models as a diagnostic in a 
supervised fashion
• Direct comparison between 

predicted settings and actual settings 
informs operations of a potential 
anomaly with that magnet

• Inverse models as a diagnostic in
an unsupervised fashion
• Assumptions

• model errors are caused by other 
beamline elements 

• each beam-line element will have a 
unique error signature 
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A FODO cell toy problem

• Prototype the algorithm on a FODO cell
• Neural network trained to predict corrector settings 

from BPM measurements
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A FODO cell toy problem

• Prototype the algorithm on a FODO cell
• Neural network trained to predict corrector settings 

from BPM measurements

• Test neural network on data with single quadrupole 
error

• Study correlation between quadrupole error and 
model prediction error
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AGS to RHIC transfer line
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AGS to RHIC transfer line study
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AGS to RHIC transfer line study

• Inverse model trained using 5000 samples, 
randomly varying the corrector strengths and 
beam initial positions. 

• Removed four correctors (utv4, uth6, utv7, and 
wth1) from the inverse model due to degeneracy 
issues. 
• In future work we will address this issue

• Model / Training Parameters:
• For this study the data were split into 80% training and 

20% validation

• 5 dense layers with 45 nodes each 

• Gaussian noise for regularization

• Rectified linear units for the activation functions
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AGS to RHIC transfer line study

• Two configurations were used: one where the initial 
positions were also varied randomly and one where the 
initial positions were not varied. 

• Right:  Predicted corrector settings vs the ground truth 
for the validation set 
• Black: without quadrupole errors

• Red: a single quadrupole error and random initial position errors 

• Blue: a single quadrupole error without initial position errors
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AGS to RHIC transfer line study

• Sensitivity of each corrector prediction to a 
particular quadrupole 
• Unique signatures for each quadrupole 

• The model clearly identifies errors in these magnets 
without any explicit knowledge of their existence

• Future work
• Use signatures to predict unknown quadrupole 

errors

• Use model errors to tune out quadrupole errors
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Conclusions

Accelerator	R+D Beam	for	Experimentalists Down	Time

Autoencoders	
(unsupervised	and	semi-supervised	

detection	of	fault	precursors)

Promising	studies	on	the	APS	storge
ring.	Working	towards	new	

applications.

Inverse	Models
(unsupervised	and	semi-supervised	

detection	of	beamline	errors)

Promising	studies	on	FODO	example	
and	ATR	line.	Working	towards	

deployment
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.


