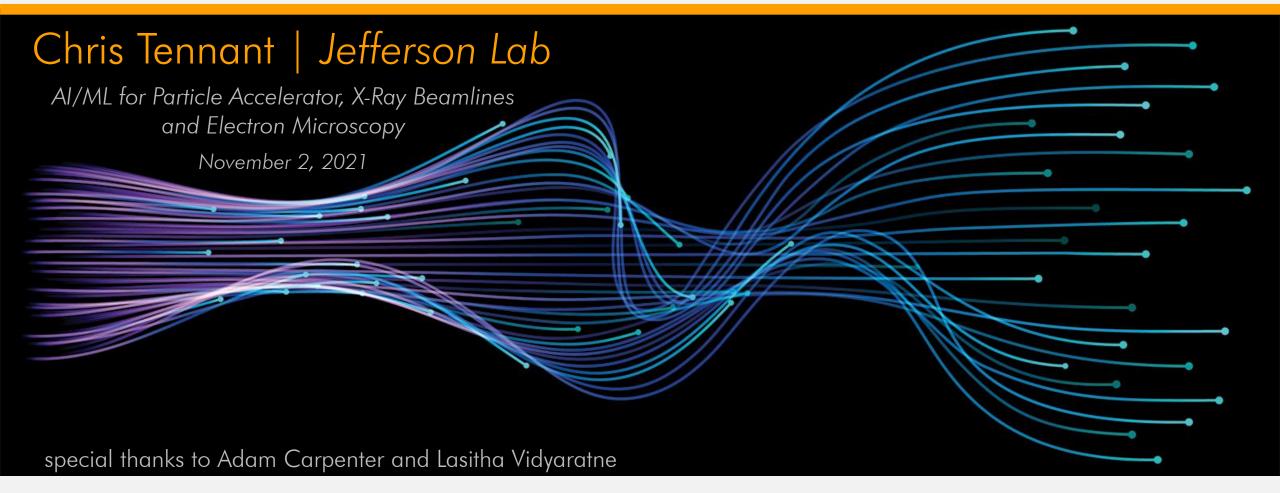
Data-Driven Detection, Isolation, Identification, and Prediction of Accelerator Fault Events



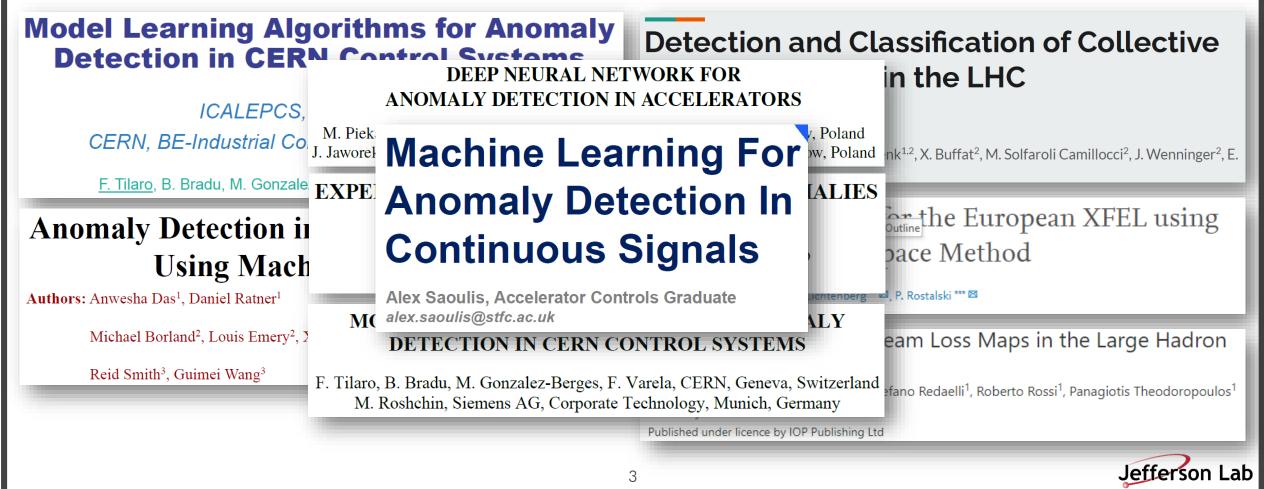
Outline

Some Definitions

- Case Study: SRF Cavities
 - isolation and identification
 post-fault and post-run
 - ✓ prediction
- Data
- Summary

AI and Particle Accelerators

- particle accelerators represent the most complex scientific instruments designed, built, and operated
- there is clear motivation to maximize scientific output per operating dollar

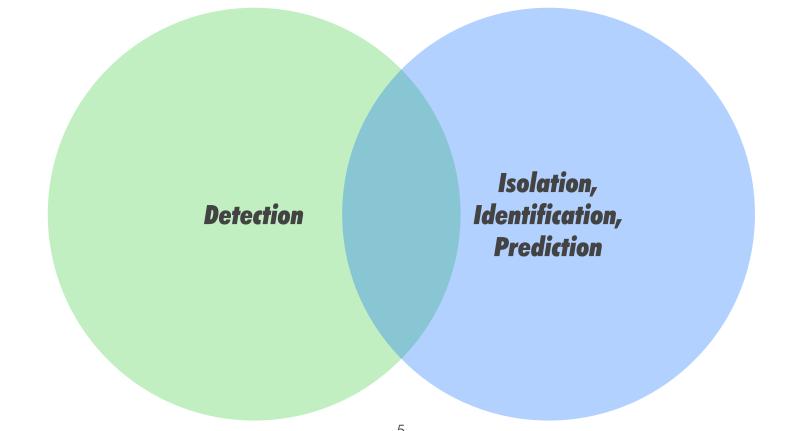


Definitions

- Fault: an unpermitted deviation of at least one characteristic property or parameter of the system from acceptable, usual or standard conditions
- **Fault Detection**: monitoring measured variables to determine if a fault has occurred (if a fault has occurred, it may be important to determine the time at which the fault occurred)
- Fault Isolation: determining the location of a fault once it is known that a fault has occurred
- Fault Identification: determining the type of fault
- Fault Prediction: providing advanced warning of an impeding fault

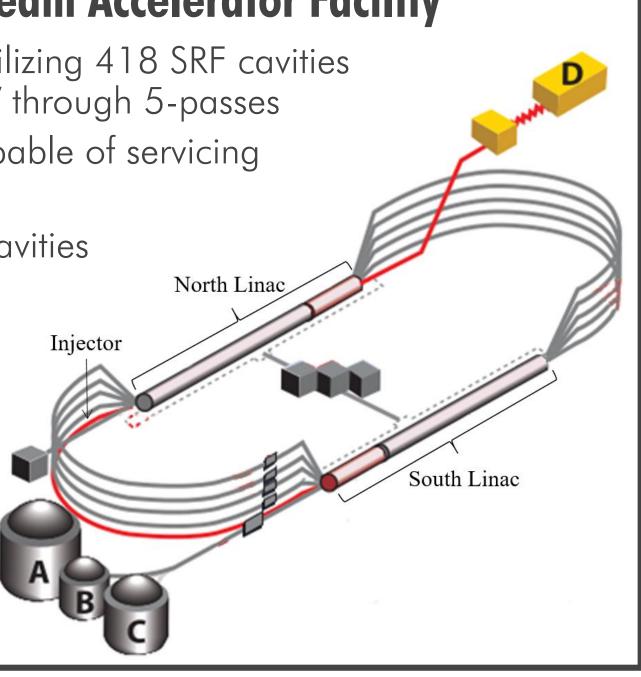
Detection vs (Isolation, Identification, Prediction)

- machine protection systems, personal safety systems, alarms, and other engineered systems are able to detect many types of faults
- in this talk the focus is on faults that have already been detected



Continuous Electron Beam Accelerator Facility

- CEBAF is a CW recirculating linac utilizing 418 SRF cavities to accelerate electrons up to 12 GeV through 5-passes
- it is a nuclear physics user-facility capable of servicing 4 experimental halls simultaneously
- the heart of the machine is the SRF cavities



Case Study: SRF Cavities

FAULT ISOLATION

Which of the 8 cavities faulted first?

17 signals/cavity × 8 cavities = 136 signals

FAULT IDENTIFICATION

What kind of trip was it?

17 signals

train a model to correctly classify the <u>cavity</u> and <u>type</u> of RF fault given waveform data

machine learning

we have the ability to record high-

fidelity data from 12 cryomodules

1 cryomodule = collection of 8 cavities

multi-class classification

time-series data

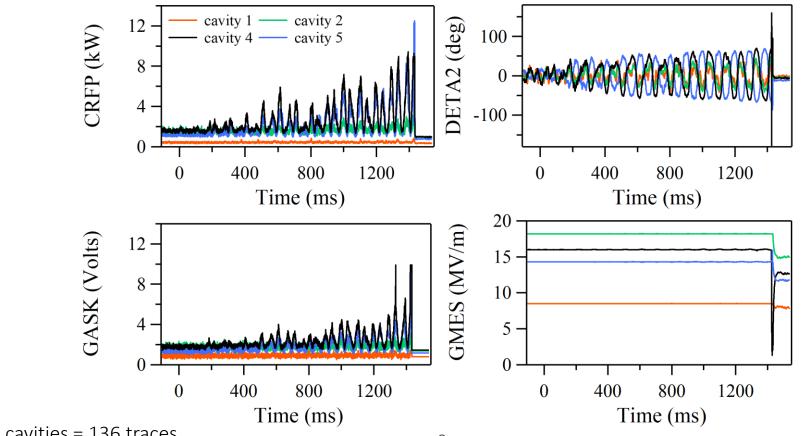
Data Acquisition System

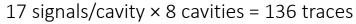
• waveform harvester was developed to capture RF time-series signals after a fault and write them to file for later analysis \checkmark each of the 17 harvested waveform signals is 8,192 points long ✓ trigger set such that 94% of the recorded data precedes the fault and 6% after ✓ pre-fault data provides valuable information about the root cause of the trip fault event streaming data

8,192 samples \times 0.2 ms/sample = 1.64 seconds

Motivation

- labeling is hard
 - ✓ have a subject matter expert with 30+ years SRF experience to label fault events
 ✓ closer to annotating medical images than distinguishing between cats and dogs





Jefferson Lab

Benefit of Fault Isolation and Identification

Post-Run Analysis

- use aggregate statistics for data-driven guidance for maintenance and/or upgrade activities
 - ✓ analysis of fall 2018 data indicated three cryomodules in the South Linac were prone to microphonic-based faults → provided justification to perform microphonics hardening (installing tuner dampers) → reduced microphonics-based trip rates → gradients could be increased in those cryomodules

Post-Fault Analysis

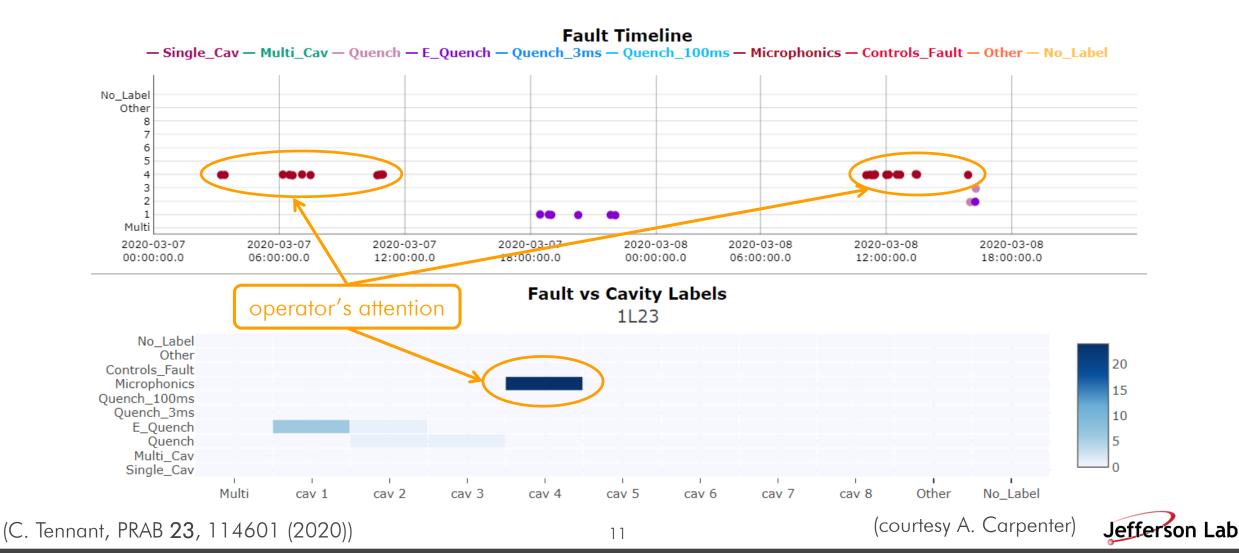
- provides critical feedback to control room operators
- fault types get mapped to actions for the operators

 "if Fault A happens X times within Y minutes, drop gradient in the cavity by Z MV/m"

 "if Fault B happens X times within Y minutes, contact a SME"

Visualization and Communication

- for ML models to be effective, information must be communicated clearly and concisely
- visualize spatial and temporal nature of model predictions

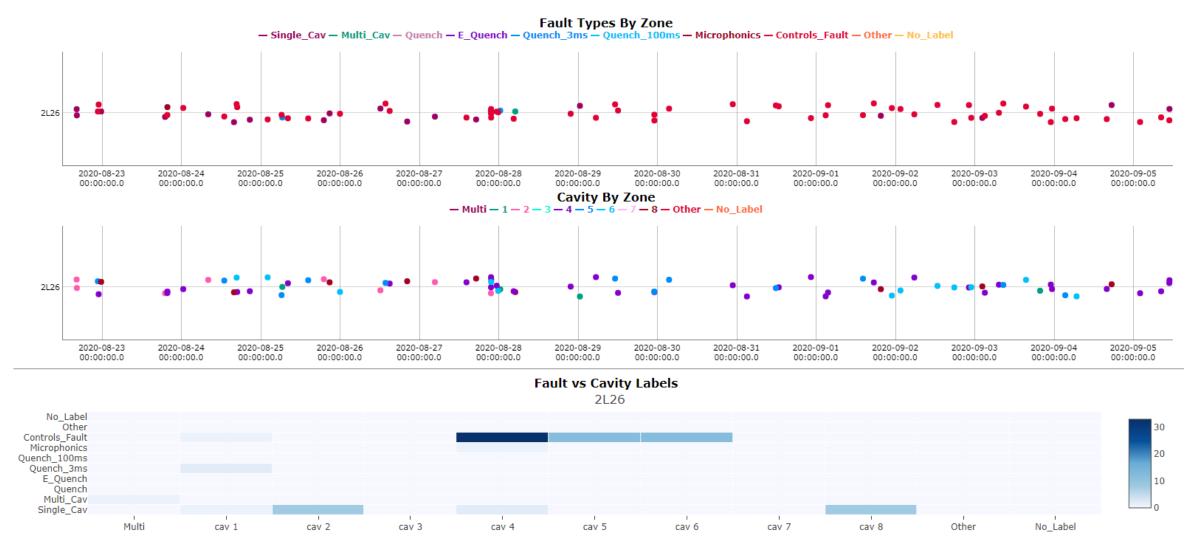


Post-Fault: Actionable Information

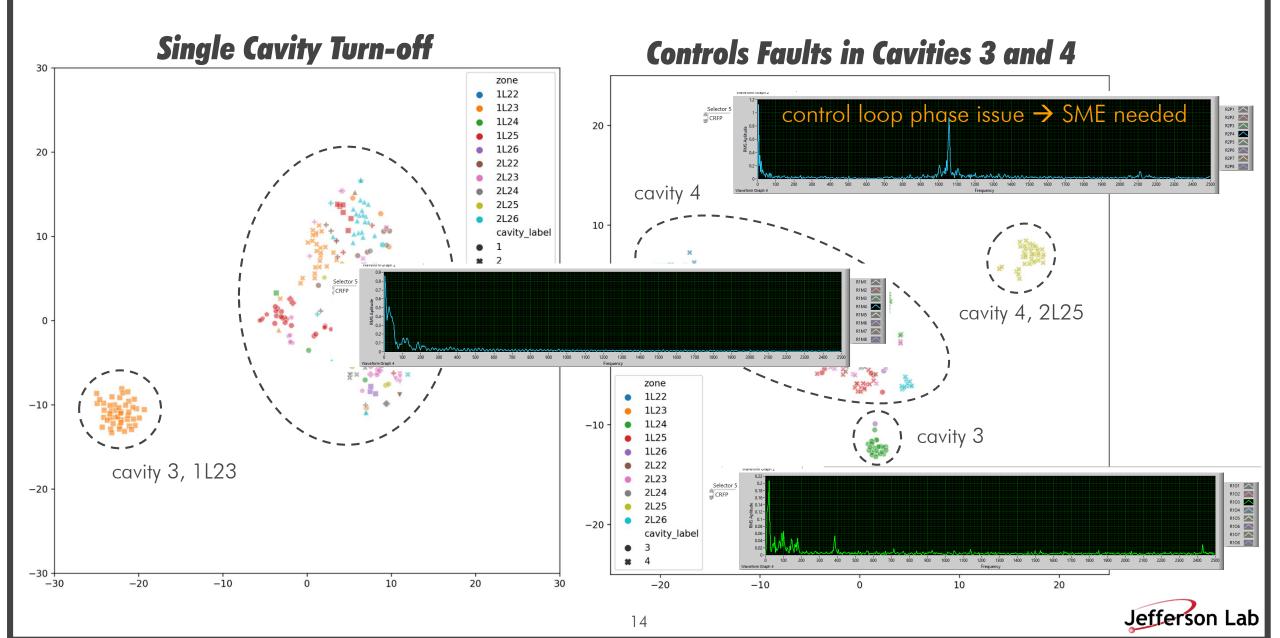
• cavity 8 in cryomodule 2L26 plagued by electronic quenches

Post-Fault: Actionable Information

• turn down gradient September 5, 2020 and faults went away completely

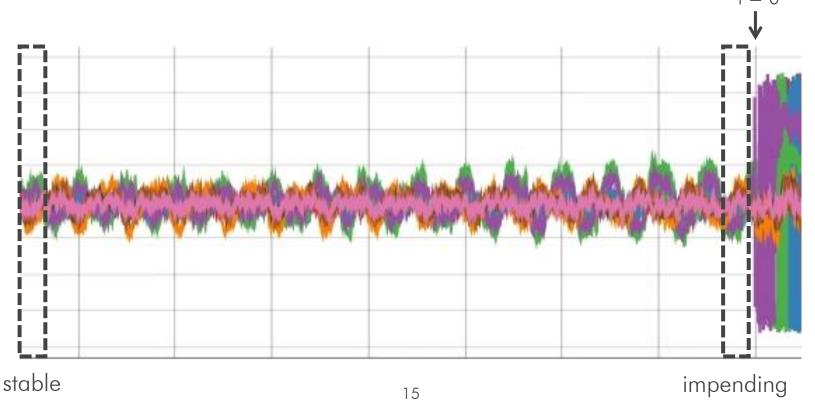


Post-Run: Dimensionality Reduction



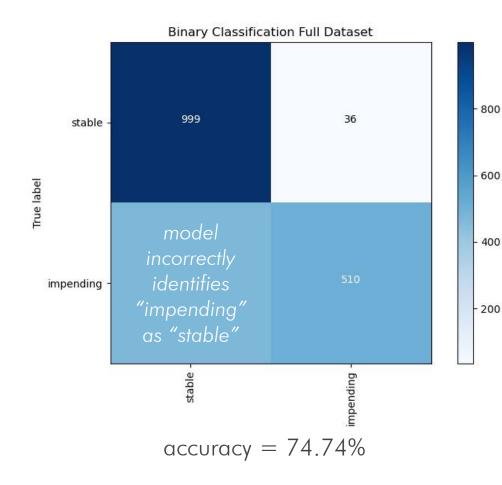
From Isolation and Identification to Prediction

- fault prediction
 - ✓ near-term: fault avoidance
 - ✓ longer-term: predictive maintenance/prognostics
- initial step: discriminate between "stable" and "impending" fault conditions
 ✓ use saved waveforms

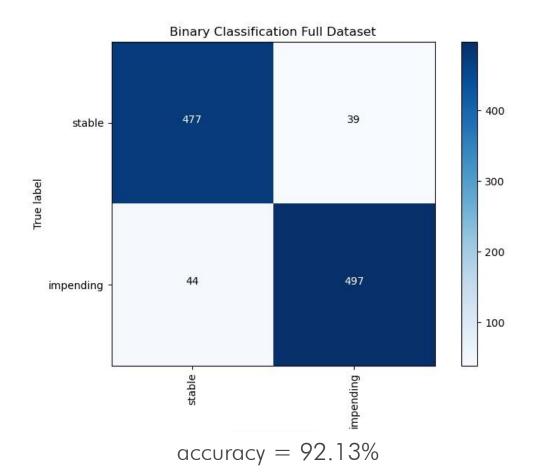


Initial Step: Binary Classifier

16



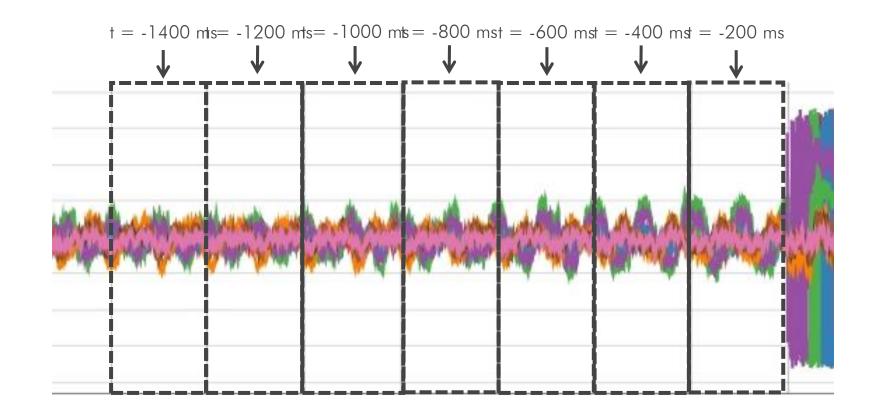
 remove fault types which do not show any precursors



	Precision	Recall	f1-score	Support
Stable	0.9155	0.9244	0.9199	516
Impending	0.9272	0.9186	0.9229	541
Accuracy	0.9213			

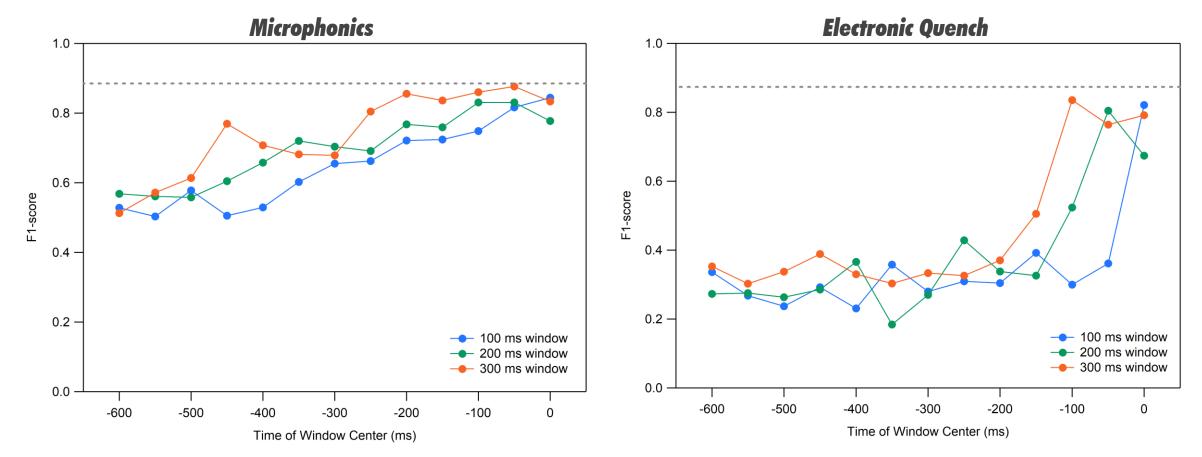
Intermediate Step: Sliding Window

can data prior to event accurately predict the fault type?
 ✓ use saved waveforms



Intermediate Step: Sliding Window

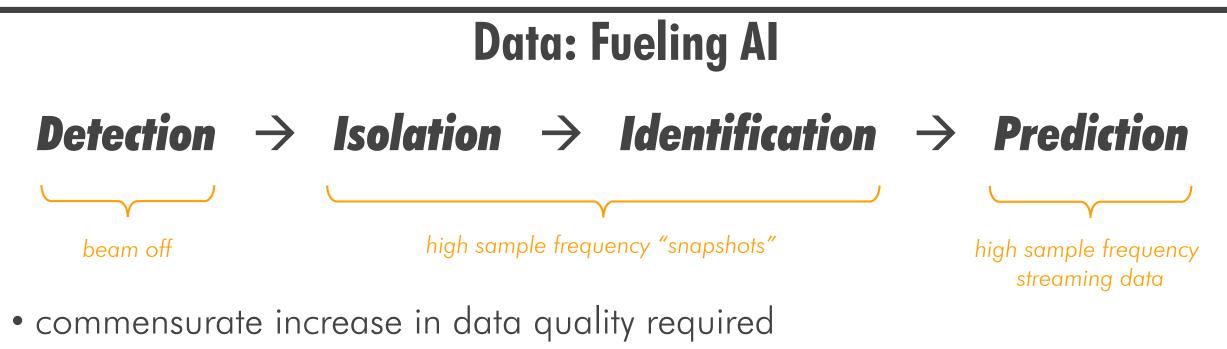
• initial results suggests that for some fault types, prediction is possible



motivates continued study

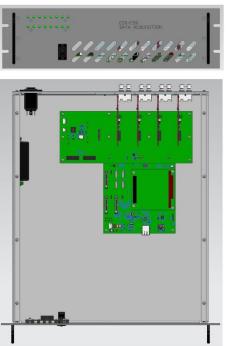
✓ what kind of targeted mitigations could be implemented in those time-scales? Jefferson Lab

18



SRF cavity instability detection in legacy cryomodules

prototype DAQ for legacy CEBAF cryomodules



field emission management

JLab designed radiation detector

Summary

- detecting, localizing (isolation) and classifying (identification) faults represent areas ripe for ML application
- the transition to fault prediction often represents an ultimate goal
- higher quality data is needed as you move along the spectrum from detection to isolation to identification to prediction
 - \checkmark access to information-rich data is critical
- to achieve good performance, in addition to better data, may also need additional and/or different data
 - ✓ growth in ML must necessarily be accompanied by more and/or better data

Thomk You,

tennant@jlab.org