
1

Data-Driven Detection, Isolation, Identification, 

and Prediction of Accelerator Fault Events

AI/ML for Particle Accelerator, X-Ray Beamlines 

and Electron Microscopy

November 2, 2021

Chris Tennant | Jefferson Lab

1

special thanks to Adam Carpenter and Lasitha Vidyaratne



2

• Some Definitions

• Case Study: SRF Cavities

 isolation and identification

 post-fault and post-run

 prediction

• Data

• Summary

Outline



3

AI and Particle Accelerators

• particle accelerators represent the most complex scientific instruments

designed, built, and operated

• there is clear motivation to maximize scientific output per operating dollar
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• Fault: an unpermitted deviation of at least one characteristic property or

parameter of the system from acceptable, usual or standard conditions

• Fault Detection: monitoring measured variables to determine if a fault has

occurred (if a fault has occurred, it may be important to determine the time

at which the fault occurred)

• Fault Isolation: determining the location of a fault once it is known that a

fault has occurred

• Fault Identification: determining the type of fault

• Fault Prediction: providing advanced warning of an impeding fault

Definitions

(R. Isermann, “Fault Diagnosis Systems”)
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• machine protection systems, personal safety systems, alarms, and other

engineered systems are able to detect many types of faults

• in this talk the focus is on faults that have already been detected

Detection vs (Isolation, Identification, Prediction)

Detection

Isolation,

Identification,

Prediction
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• CEBAF is a CW recirculating linac utilizing 418 SRF cavities 

to accelerate electrons up to 12 GeV through 5-passes 

Continuous Electron Beam Accelerator Facility

• it is a nuclear physics user-facility capable of servicing 

4 experimental halls simultaneously

• the heart of the machine is the SRF cavities



we have the ability to record high-
fidelity data from 12 cryomodules 

in CEBAF
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FAULT ISOLATION
Which of the 8 cavities faulted first?

FAULT IDENTIFICATION
What kind of trip was it?

17 signals/cavity × 8 cavities = 136 signals 17 signals1 cryomodule = collection of 8 cavities

Case Study: SRF Cavities

train a model to correctly classify the cavity and type of RF fault given waveform data

machine learning multi-class classification time-series data
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… …

fault event

Data Acquisition System

streaming data

8,192 samples × 0.2 ms/sample = 1.64 seconds

• waveform harvester was developed to capture RF time-series signals after a

fault and write them to file for later analysis

 each of the 17 harvested waveform signals is 8,192 points long

 trigger set such that 94% of the recorded data precedes the fault and 6% after

 pre-fault data provides valuable information about the root cause of the trip
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Motivation

17 signals/cavity × 8 cavities = 136 traces

• labeling is hard

 have a subject matter expert with 30+ years SRF experience to label fault events

 closer to annotating medical images than distinguishing between cats and dogs
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Post-Run Analysis

• use aggregate statistics for data-driven guidance for maintenance and/or

upgrade activities

analysis of fall 2018 data indicated three cryomodules in the South Linac were prone

to microphonic-based faults  provided justification to perform microphonics

hardening (installing tuner dampers)  reduced microphonics-based trip rates 

gradients could be increased in those cryomodules

Post-Fault Analysis

• provides critical feedback to control room operators

• fault types get mapped to actions for the operators

“if Fault A happens X times within Y minutes, drop gradient in the cavity by Z MV/m”

“if Fault B happens X times within Y minutes, contact a SME”

Benefit of Fault Isolation and Identification
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Visualization and Communication

• for ML models to be effective, information must be communicated clearly and concisely

• visualize spatial and temporal nature of model predictions

operator’s attention

(C. Tennant, PRAB 23, 114601 (2020))
(courtesy A. Carpenter)
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• cavity 8 in cryomodule 2L26 plagued by electronic quenches

Post-Fault: Actionable Information
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• turn down gradient September 5, 2020 and faults went away completely

Post-Fault: Actionable Information
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Post-Run: Dimensionality Reduction

Single Cavity Turn-off

cavity 3

cavity 4, 2L25

cavity 4

Controls Faults in Cavities 3 and 4

cavity 3, 1L23

control loop phase issue  SME needed
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• fault prediction

 near-term: fault avoidance

 longer-term: predictive maintenance/prognostics

• initial step: discriminate between “stable” and “impending” fault conditions

 use saved waveforms

From Isolation and Identification to Prediction

t = 0

stable impending
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Initial Step: Binary Classifier

Precision Recall f1-score Support

Stable 0.9155 0.9244 0.9199 516

Impending 0.9272 0.9186 0.9229 541

Accuracy 0.9213

• remove fault types which do not

show any precursors

accuracy = 74.74% accuracy = 92.13%

model 

incorrectly 

identifies 

“impending” 

as “stable”
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• can data prior to event accurately predict the fault type?

 use saved waveforms

Intermediate Step: Sliding Window

t = -1400 mst = -1200 ms t = -800 mst = -1000 ms t = -400 mst = -600 ms t = -200 ms
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Intermediate Step: Sliding Window

• initial results suggests that for some fault types, prediction is possible

• motivates continued study

what kind of targeted mitigations could be implemented in those time-scales?

Electronic QuenchMicrophonics
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Data: Fueling AI

Detection    Isolation    Identification    Prediction

• commensurate increase in data quality required

high sample frequency “snapshots” high sample frequency 

streaming data

prototype DAQ for legacy 

CEBAF cryomodules

JLab designed 

radiation detector

SRF cavity instability 

detection in legacy 

cryomodules

field emission 

management

beam off

(courtesy R. Suleiman)
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• detecting, localizing (isolation) and classifying (identification) faults represent

areas ripe for ML application

• the transition to fault prediction often represents an ultimate goal

• higher quality data is needed as you move along the spectrum from

detection to isolation to identification to prediction

 access to information-rich data is critical

• to achieve good performance, in addition to better data, may also need

additional and/or different data

 growth in ML must necessarily be accompanied by more and/or better data

Summary
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Thank You.

tennant@jlab.org


