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Al and Particle Accelerators

* particle accelerators represent the most complex scientific instruments
designed, built, and operated

* there is clear motivation to maximize scientific output per operating dollar
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Definitions

* Fault: on unpermitted deviation of at least one characteristic property or
poarameter of the system from acceptable, usual or standard conditions

* Fault Detection: monitoring measured variables to determine it a fault has
occurred (it a fault has occurred, it may be important to determine the time
at which the fault occurred)

* Fault Isolation: determining the location of a fault once it is known that a
tfault has occurred

* Fault Identification: determining the type of fault

* Fault Prediction: providing advanced warning of an impeding fault

(R. Isermann, “Fault Diagnosis Systems”)



Detection vs (Isolation, Identification, Prediction)

* machine protection systems, personal safety systems, alarms, and other
engineered systems are able to detect many types of taults

* in this talk the focus is on faults that have already been detected

Isolation,
Detection Identification,
Prediction
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Continuous Electron Beam Accelerator Facility

CEBAF is a CW recirculating linac utilizing 418 SRF cavities
to accelerate electrons up to 12 GeV through 5-passes

* it is a nuclear physics user-tacility capable of servicing
4 experimental halls simultaneously

* the heart of the machine is the SRF cavities




Case Study: SRF Cavities

we have the ability to record high- FAULT ISOLATION FAULT IDENTIFICATION
fidelity data from 12 cryomodules Which of the 8 cavities faulted first? What kind of trip was it?

train @ model to correctly classify the cavity and type of RF fault given waveform data

machine learning multi-class classification time-series data




Data Acquisition System

» wavetorm harvester was developed to capture RF time-series signals after a

tfault and write them to file tor later analysis
v each of the 17 harvested wavetorm signals is 8,192 points long
v trigger set such that 94% of the recorded data precedes the fault and 6% aftter
v' pre-tfault data provides valuable information about the root cause of the trip

fault event

streaming data

8,192 samples X 0.2 ms/sample = 1.64 seconds
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Motivation
* labeling is hard

— cavity | —— cavity 2
cavity 4 —— cavity 5

[a—y
o] =]
| l

I
[

DETAZ2 (deg)

z
2
o
é
O

.I - T i T - I - ] T
400 800 1200 400 800 1200
Time (ms) Time (ms)

GMES (MV/m)

GASK (Volts)

; — 1 T 1
400 800 1200 400 800 1200

Time (ms) Time (ms)
17 signals/cavity x 8 cavities = 136 traces .!_e,f,f.e;son Lab




Benefit of Fault Isolation and Identification

Post-Run Analysis

* use aggregate statistics for data-driven guidance for maintenance and/or
upgrade activities

Post-Fault Analysis

* provides critical teedback to control room operators

e fault types get mapped to actions for the operators




Visualization and Communication

* for ML models to be effective, information must be communicated clearly and concisely

e visualize spatial and temporal nature of model predictions
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Post-Fault: Actionable Information

* cavity 8 in cryomodule 2126 plagued by electronic quenches
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Post-Fault: Actionable Information

* turn down gradient September 5, 2020 and faults went away completely

Fault Types By Zone
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Post-Run: Dimensionality Reduction

Single Cavity Turn-off Controls Faults in Cavities 3 and 4
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From Isolation and Identification to Prediction

e fault prediction
v’ near-term: tault avoidance
v" longer-term: predictive maintenance/prognostics

* initial step: discriminate between “stable” and “impending” tault conditions
v’ use saved wavetorms o
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Initial Step: Binary Classifier

Binary Classification Full Dataset Binary Classification Full Dataset

True label
True label

impending impending -

mpending -
mpending

accuracy = /4.74% accuracy = 92.1 é%

Precision Recall f1-score

* remove fault types which do not » Stable | 0.9155 | 0.9244 | 0.9199

show any precursors Impending | 0.9272 | 0.9186 | 0.9229
Accuracy 0.9213

16




Intermediate Step: Sliding Window

* can data prior to event accurately predict the fault type?
v' use saved waveforms
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Intermediate Step: Sliding Window

* initial results suggests that for some fault types, prediction is possible
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motivates continued study




Data: Fueling Al

Detection — Isolation - Identification - Prediction
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beam off high sample frequency “snapshots” high sample frequency
streaming data

* commensurate increase in data quality required

(couttesy R. Stleiman)
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SRF cavity instability
detection in legacy
cryomodules

field emission
management

prototype DAQ for legacy = ! - JLab designed
CEBAF cryomodules i . s radiation detector




Summary

» detecting, localizing (isolation) and classitying (identitication) taults represent
areas ripe tfor ML application

* the transition to fault prediction often represents an ultimate goal

* higher quality data is needed as you move along the spectrum from
detection to isolation to identitication to prediction

* to achieve good performance, in addition to better data, may also need
additional and/or ditterent data




Thank You.
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