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Machine Learning Grant from BES
Collaboration between SNS, ORNL, and Jefferson Lab. 
1) Develop ML capabilities for time series analysis and prediction: 

a) Use unsupervised and semi-supervised learning with existing data to develop ML models with 
multiple timescales to predict failure scenarios. 

b) Develop ML-based anomaly detection capabilities for accelerator operations. 
c) Develop Uncertainty Quantification (UQ) capabilities for robust and reliable time-series analysis. 
d) Develop causal analysis capabilities relating failure predictions and anomalies to sensor 

measurements and system operating parameters. 

2) Demonstrate Objective (1) on accelerator and target systems to monitor condition, 
detect anomalies, and predict failure, using information from system instrumentation and 
beam-based signatures. 

3) Demonstrate ML-based surrogate modeling to optimize parameters and inform design 
choices. 



3

Four use-cases

1.HVCM
Predict upcoming failure and 
parameter optimization

2.Cryogenic Moderator 
System
Improve loop control

3. Target
Surrogate modeling to improve 
simulation for design and failure 
prediction using strain data (HPC)

4. Beam-based
Predict errant beam using beam 
Instrumentation: DCM/BPM/MPS
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Data science pipeline for Errant Beam anomaly studies

• Goal: Predict an upcoming machine trip at least one macro-
pulse before it happens.

• How: We use pulses leading to a trip (tagged "Before") and to 
identify features that indicate an upcoming failure

• Data science pipeline used:

Data Source

● Real or synthetic
● Quality
● Dimensionality
● Format
● Density
● Size

Data 
Preparation

● Data cleaning
● Data restructuring
● Correlations
● Dynamics
● Visualization  

ML 
Applications

● Classification
● Regression
● Clustering
● Feature extraction

Results

● Predictions
● Confidence Level
● Explainability

Training 
Tools

● Cross-validation
● HPO
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Stage 1/2 - Data Source and Preparation: Overview
• How was the data collected and labeled?

– Data acquired during March 2021
• The accelerator creates a series of pulses (“macro-pulses”) 

with each macro-pulse composed of ~1k mini-pulses  
• An errant-beam data file is composed of 25 “good” macro-

pulses followed by the errant beam pulse
• A “normal” data file has no errant beam pulse

– We used the macro-pulse before the errant beam pulse and 
macro-pulses from the normal file for our studies 
• Our hypothesis is that there is a sign that something wrong is 

going to happen in the previous macro-pulse
• We also need to forecast the fault in enough time to be 

actionable
– We are using time samples between 3,500-13,500 (10k samples) for 

the primary analysis presented in these slides
– Samples were divided into 3 orthogonal dataset: 

• Train/validation(80%)/test(20%)
– Train/validation (80%/20%)
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Stage 1/2 - Data Source and Preparation: Macro-stats
• Explore the macro stats for all macro-pulses
• Example: random selection of 30 micro-pulse without 

any requirements on the number of peaks

Found some statistical variations in the “Before” pulses
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Stage 1/2 - Data Source and Preparation: Peak Finding
• Identified traces with statistical variations in our initial training sample (non-production beam)
• We applied a peak find algorithm to ensure the correct number of peaks
• Removed this data from our data-set
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Stage 3 - Machine Learning
• Random Forest

– Predict errant beam
– Supervised

• Siamese twin
– Predict errant beam
– Monitor any drifts in the normal pulses
– Maybe add failing equipment later

• RNN/LSTM Auto-encoder
– Predict failing equipment
– Use reconstruction error to identify 

anomalies

• Integration with ORNL FPGA Group
– Implement RF model on FPGA
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Stage 3 - Machine Learning
Random Forest Work [1]

Work independent of grant
Method

– Random Forest classifier with 100 estimators
– Improvements: PCA, FFT, Voting, different dataset sizes

Metrics
– Train/test dataset separation, 5-fold exhaustive cross-

validation during training
– True Positive / False positive = How many trips can we 

find without raising too many false alarms
– Classification speed (needs to fit within 16 ms)

00110000 (no SCL beamloss):     (FP/TP): 0.00126 / 0.17 = per day: 40/233 predicted trips, 6531 false alarms 
NOT 00110000 (SCL beam loss): (FP/TP): 0.0008   / 0.74 = per day: 20/27   predicted trips, 4133 false alarms 

(~5,184,000 pulses per day)
• Focusing on events with beam loss, we can already predict 75% of errant beam pulses with less than 

0.1% of good beam aborted! 
• Classifiers require 0.6 – 3 milliseconds on laptop.

[1] Rescic, M., Seviour, R., & Blokland, W. (2020). Predicting particle accelerator failures using binary 
classifiers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, 
Detectors and Associated Equipment, 955, [163240]. https://doi.org/10.1016/j.nima.2019.163240



10

Stage 3 - Machine Learning:  
Classification vs. Similarity

• We are using a Siamese model since we 
want to focus on the similarity between a 
reference pulse and the current pulse

• Siamese model does not explicitly model the 
classification but focuses on the similarities

• Embedding is done using a ResNetCov1D
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Stage 3 - Machine Learning: Siamese Model
• Using a Siamese model to focus on the similarity between a reference (aka “normal”) 

pulse and the current pulse

• Siamese model does not explicitly model the classification but focuses on the similarities

Used to avoid overfitting
• Using dropout layer

Reduced feature representation
• Using 1D convolutional resnet model

Final similarity score

Input data
• Left input is mixed
• Right input is all “normal”

Similarity calculation:
• L1 and L2 methods are available
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Stage 3 - Machine Learning:  Two Moons Example
• In domain training data vs out-of-domain inference.

• The goal is to classify data points in a cartesian grid as “positive” or “negative”

• Traditional approach is to use a classification method

• We also include a 3rd data type that is not part of the training sample “out-of-domain” to 
illustrate a key problem
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Stage 3 - Machine Learning:  Classification vs. Similarity
• For a classification algorithm, the goal is to identify each specific class. 

• For Siamese algorithm, we are explicitly identifying what is different!

Completely miss identified 
the out of domain sample.

Correctly identified as different from 
the reference data

Class  A

Class  B

Similar

Not similar
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Results for deterministic Siamese Model
• The classification output is smooth and devoid of any weird 

artifacts (peaks/cliffs)

• The Siamese model as ~4x better performance than the 
previous RF results

Results, continued
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Understand what your model knows and doesn’t know
Providing methods to reliably quantify the 
predictive uncertainty for our models is 
critical for real-world applications.

Different method yield vastly different 
classification predictions, some examples:

– Deterministic
– MC Dropout
– Deep Ensemble
– Gaussian Processes
– Bayesian Neural Networks

• Different models architectures can yield 
better results if you do not know all 
classifications

Anomaly Type #1 Anomaly Type #2

Anomaly Type #3
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Results of the UQ-based Siamese Model
• We enhanced our Siamese model by adding GP layer 

providing an uncertainty estimate
• The ROC curves shows nearly the same level of performance 

(not optimized)
• We introduced an out-of-domain anomaly, labelled 1111 

(red), the UQ-based model correctly identified the anomaly 
and indicated high uncertainty (as expected)
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