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Machine Learning Grant from BES
Collaboration between SNS, ORNL, and Jefferson Lab.

1) Develop ML capabilities for time series analysis and prediction:

a) Use unsupervised and semi-supervised learning with existing data to develop ML models with
multiple timescales to predict failure scenarios.

b) Develop ML-based anomaly detection capabilities for accelerator operations.

c) Develop Uncertainty Quantification (UQ) capabilities for robust and reliable fime-series analysis.

d) Develop causal analysis capabilities relating failure predictions and anomalies to sensor
measurements and system operating parameters.

2) Demonstrate Objective (1) on accelerator and target systems to monitor condition,
detect anomalies, and predict failure, using information from system instrumentation and
beam-based signatures.

3) Demonstrate ML-based surrogate modeling to optimize parameters and inform design
choices.
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Four use-cases

1.HVCM

Predict upcoming failure and
parameter optimization

2. Cryogenic Moderator
System

Improve loop control

3.Target

Surrogate modeling to improve
simulation for design and failure
prediction using strain data (HPC)

4. Beam-based

Predict errant beam using beam
Instrumentation: DCM/BPM/MPS
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Data science pipeline for Errant Beam anomaly studies

« Goal: Predict an upcoming machine trip at least one macro-
pulse before it happens.

« How: We use pulses leading to a trip (tagged "Before”) and to
identify features that indicate an upcoming failure

 Data science pipeline used:

Data ML Training

Dl SEUITEE Preparation Applications Tools

e  Real or synthetic e Data cleaning e Classification e Cross-validation e  Predictions

e Quality e  Data restructuring e  Regression e HPO e Confidence Level

e Dimensionality e Correlations e  Clustering e Explainability

e Format e Dynamics e  Feature extraction

e Density e Visualization

e Size
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Stage 1/2 - Data Source and Preparation: Overview

e How was the data collected and labeled?
- Data acquired during March 2021

macro-pulses

/ \

« The accelerator creates a series of pulses (“*macro-pulses”)
with each macro-pulse composed of ~1k mini-pulses

« An errant-beam data file is composed of 25 “good” macro-
pulses followed by the errant beam pulse

Beam Current >

« A “normal” data file has no errant beam pulse

- We used the macro-pulse before the errant beam pulse and

macro-pulses from the normal file for our studies ~1000 mini-pulses

//
Upstream //

~1 ps | i

11111

« Our hypothesis is that there is a sign that something wrong is
going to happen in the previous macro-pulse
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« We also need to forecast the fault in enough time to be
actionable

N
o

- We are using time samples between 3,500-13,500 (10k samples) for
the primary analysis presented in these slides

Beam Current (mA) >
o

- Samples were divided into 3 orthogonal dataset: L UULULUN MUY WA //// ANIEANEN
.+ Train/validation(80%)/test(20%) P e > 1005 1010

— Train/validation (80%/20%)
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Stage 1/2 - Data Source and Preparation: Macro-stats

A
« Explore the macro stats for all macro-pulses & Lms macro-pulses
« Example: random selection of 30 micro-pulse without § m / \
any reguirements on the number of peaks § o Clesms
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Found some statistical variations in the “Before’” pulses



Stage 1/2 - Data Source and Preparation: Peak Finding

« |dentified traces with statistical variations in our inifial fraining sample (hon-production beam)
« We applied a peak find algorithm to ensure the correct number of peaks
« Removed this data from our data-set
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Stage 3 - Machine Learning

e Random Forest
— Predict errant beam
— Supervised

RM <= 7.437
mse = 82.697
samples = 66
value = 36.705

. ° se = 12.565 se = 9.415 se = 11.647 se = 5.29 se = 14 813 mse = 9.714
samples = 151 samples = 47 samples = 49 samples = 2 pl 39 samples = 4
. I O l ' I e S e WI I l value = 22.424| |value = 16.565| [value = 11.743 value = 12.7 vall 32.205 value = 39.84
Image #1
Encodings

— Predict errant beam A
— Monitor any drifts in the normal pulses g \
- MOYbe Odd f(]”iﬂg eCIUipmenT IOTer Shared weights - euclidean_distance(h1, h2) — sigmoid —» 0.98

« RNN/LSTM Auto-encoder /

h(image2)
- Predict failing equipment
Encodings "\,

— Use reconstruction error to identify o -
anomalies h P4

h(imagel)
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 Infegration with ORNL FPGA Group 7 mﬂ o

b 43

- Implement RF model on FPGA

Layer Componentwise Copy Concatenate

Legend:
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Stage 3 - Machine Learning |

1.0+
Random Forest Work [1] %
2
Work independent of grant £ i
% 044/ —— RF(BA-BN)(AUC=027) '; 0.4 = RF(BA-BN) (AP =037)
Method ] i || § = e
. . . 'é e = PCA+RF(AUC =0.78) = 029 — PCARF(AP=082)
- Random Forest classifier with 100 estimators N |t e |l wetar-es
. . . .(LU (;1 (;4 (;b (;K 1.0 OiiM) UE OH (ib (;8 1.0
— |mprovemeﬂ1's: PCA, FFT, VO'l'Ing, dlffereﬂ'l' d(]'l'(jse'l' S|IZes False Positive Rate (Positive label: 1) Recall ( Positive label: 1)
. 'l.'ul)l(- 6: List of label thresholds and the effect on T}, and F), for different classifiers and dataset
MeTHCS " Classifier | The T, AR F,
- Train/test dataset separation, 5-fold exhaustive cross- FFTRE |09 011 000165 | 079 035 00000
validation during ’rroining PCA + RF 0.95 0.18 0.00165 | 0.73 0.42 0.0099
Voting 0.92 0.10 0.00165 | 0.70 0.40 0.0099
— True Positive / False posiTive = How many ’[ripg can we RF (B2N) 0.85 0.12 0.00126 | 0.59 0.32 0.0097
FFT + RF (B2N) | 0.89 0.17 0.00126 | 0.49 0.45 0.0097

find without raising too many false alarms
— Classification speed (needs to fit within 16 ms)

00110000 (no SCL beamiloss):  (FP/TP): 0.00126 / 0.17 = per day: 40/233 predicted trips, 6531 false alarms
NOT 00110000 (SCL beam loss): (FP/TP): 0.0008 / 0.74 = per day: 20/27 predicted trips, 4133 false alarms
(~5,184,000 pulses per day)
« Focusing on events with beam loss, we can already predict 75% of errant beam pulses with less than
0.1% of good beam aborted!
« Classifiers require 0.6 — 3 milliseconds on laptop.
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[1] Rescic, M., Seviour, R., & Blokland, W. (2020). Predicting particle accelerator failures using binary Jefﬁ/egon Lab
classifiers. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, o—




Image #1
Encodings

Stage 3 - Machine Learning: - T
Classification vs. Similarity B~ |—

A

° We are USing d SK] mese mOdel Since we Shared weights > euclidean_distance(hl, h2) —— sigmoid —» .98

want to focus on the similarity between a image #2 { i similarity
reference pulse and the current pulse W — J
o « . ) ’ h(image2)
o Slamese model does not explicitly model the L
classification but focuses on the similarities Lot
« Embedding is done using a ResNetCovI1D e [[None, 80000 01| [ T input: | ((None, 80000, D]
: tL: t_3: InputL:
fnput_<: Tnputtayer output: | [(None, 80000, 1)] Bt A output: | [(None, 80000, 1)]
_ input: | [(None, 80000)] \ /
dense_input: InputLayer
output: | [(None, 80000)] Res 1D Functional input: | (None, 80000, 1)
l es1hx Functiona output: (None, 157)
4 b input: | (None, 80000) l
ense: Dense :
output: | (None, 1000) FewShotDiff: Lambda ln:JUl; l(NOﬂC-(Ilq57), (11‘150711)& 157)]
l output: one,
dense_1: Dense HpUE | Choney OO linpul: (None, 157)
- output: | (None, 100) dropout_1: Dropout
l output: | (None, 157)
dense_2: Dense mpuE | (oney 100) FewShotEncoding: Dense input: | (None, 157)
output: (None, 1) output: (None, 1)
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Stage 3 - Machine Learning: Siamese Model

e Using a Siamese model to focus on the similarity between a reference (aka “normal”)
pulse and the current pulse

« Siamese model does not explicitly model the classification but focuses on the similarities

|npUT d.OTO ) ) . — input: | [(None, 80000, 1)] . — input: | [(None, 80000, 1)]
* Leﬁ InpUT IS mlxed - & Snpuayer output: | [(None, 80000, 1)] iUl Snput.ayer output: | [(None, 80000, 1)]
« Right input is all “normal” \ /

1 input: | (None, 80000, 1
Reduced feature representation - Res1D: Funcriona] | MPA_| (None, 80000,
« Using 1D convolutional resnet model output: |  (None, 157)

l

Lo . — o N1
Similarity calculation: _ e ShoDif: Lampdy | TP | (ONone, 157) (None, 157)]

L1 and L2 methods are available ""‘P‘I (Nore, 157)
Used to avoid overfitting input: | (None, 157)
. Using dropout layer 4 dropout_: Dropout = Nome, 157)
Y
. .. . input: | (None, 157
Ok Ringe e FINGI similarity score < FewShotEncoding: Dense ||~ > J
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Stage 3 - Machine Learning: Two Moons Example

* In domain training data vs out-of-domain inference.
 The goalis to classify data points in a cartesian grid as “positive” or “negative”
« Traditional approach is to use a classification method

« We also include a 3@ data type that is not part of the fraining sample “out-of-domain” to
illustrate a key problem

o Postive
2 - Negative
Out-of-Domain
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Stage 3 - Machine Learning: Classification vs. Similarity

« For a classification algorithm, the goal is to identify each specific class.

e For Siamese algorithm, we are explicitly identifying what is different!

Class Probability, Deterministic Model

2 4

Class A

Class B

Completely miss identified
FOAKRIDGE 6™ the out of domain sample.
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r 1.0

- 0.8

Class Similarity, Deterministic Model

Similar
— |
1 7%,

¥ X

- 0.8

Correctly identified as different from
the reference data 4e/ff;,20n Lab



Resulls for deterministic Siamese Model

-  The classification output is smooth and devoid of any weird
artifacts (peaks/cliffs)

« The Siamese model as ~4x better performance than the pelore 3 (ALC =000
previous RF results 0.0 —, : . .
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

e Bz fore {AUC = 0.79)
e Before-1 {AUC =0.73)

~ = Before-2{AUC = 0.69)

| — Before-3 (AUC = 0.66)

True Positive Raw (Positive label: 1)

1.0
120001 mmm normal .
anomalous : ; ; L
10000 - 0.8 +- .../." _______________
1000 ! ' : -
Q ! 0.74 1w ‘ o
8000 800 - & ; 0.72
7] o 0.6 oo A 0.70
-8 6000 - ) = oan A

N o i
400 - i 0.66 i

[f] F 0.4 fmemeeeeees T -
4000 7 200 - E E ,/"0.64
~ : // 0.62

2000 A ) . . 0.6 08 10 0.2 /;/ ----------- 0'9?9000 0.001 0.002 0.003 0.004 0005

o0 i —— Train Set AUC:0.9089
0 - , l , : | i —— Test Set AUC:0.9055
0.0 ¥ i % ; i
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Classifier Output False Positive Rate
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Understand what your model knows and doesn’t know

Providing methods to reliably quantify the Anomaly Type #1 Anomaly Type #2
predictive uncertainty for our models is e v .
critical for real-world applications. \,

Different method yield vastly different
classification predictions, some examples:

— Deterministic —
_ MC DrOpOU-I- Anomaly Type #3

Class Probability, MC Dropout (Normalized) Predictive Uncertainty, MC Dropout

- Deep Ensemble |
— Gaussian Processes 1 °
— Bayesian Neural Networks ' .
 Different models architectures can yield

better results if you do not know all
classifications

Class Probability, GP (Normalized) Predictive Uncertainty, GP 15 Class Probability, Deep ensemble (Normalized) Predictive Uncertainty, Deep ensemble

10
. 08

06
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02

-2 -2 -2 -2
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Results of the UQ-based Siamese Model .-

= [0 Dataset with Anomaly (1111) AUC:0.7201
- We enhanced our Siamese model by adding GP layer ] e
providing an uncertainty estimate b
« The ROC curves shows nearly the same level of performance o
(not optimized) S I
. We infroduced an out-of-domain anomaly, labelled 1111 1~ -
(red), the UQ-based model correctly identified the anomaly £ | 7 <o oo o oo oo s
and indicated high uncertainty (as expected) T im0
1.0 =7 0.06 . e Normal
o At Anomaly (1100)

® Anomaly (1111)

0.8 A

o
o
o

0.6

e
o
=~

0.4

o
o
@

0.2

Classifier output Uncertainty

0.000 0.001 0.002 0.003 0.004 0.005 -

True Positive Rate (with uncertainty band)

Rl . i 0.02
A 5 I Train Set AUC:0.8854
: : B Test Set AUC:0.8842
%0 02 04 06 0.8 10 0.0 02 04 0.6 08 1.0
False Positive Rate Classifier output
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