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Introduction

• Deciding on a Vertical Drift design is a top priority for 
DUNE moving forward

• Multiple options available : 

• 2-view : 1 induction, 1 collection — (0, 90) deg

• 3-view : 2 induction, 1 collection — (0, 48, 90) deg 
(CDR geometry)

• 3 view : 2 induction, 1 collection — (-30, 30, 90) deg

• 3 views gives us redundancy and in principle better 3D 
reconstruction 

• Tricky to evaluate the physics case for each design 
without developing the whole reconstruction 
infrastructure 
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CVN

• Idea is to use CVN as a possible input to deciding which 
design might be better

• Highly performant neutrino ID [https://arxiv.org/abs/
2006.15052]

• Just uses images of hit clusters as inputs -> 
downstream reco not necessary

• Can help us quantify differences in performance 
between different designs

• Preliminary study on this in Oct 2020 by Sandro, Saul et 
al. : 

• Used horizontal drift simulation, trainings done for 1-
view, 2-view, 3-view options by manually removing one 
of the view inputs each time

• Interesting results showing small drop in performance 
across the trainings

https://indico.cern.ch/event/864638/contributions/4041234/
attachments/2132971/3592132/SP-EPNU-29oct20.pdf
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VD Simulation

• fcls exist for the 2-view and CDR reference geometry — (0, 48, 90) deg 

• For the other 3-view design, geometry workspace already created and wire-
cell simulation already setup by Slavic/Haiwang

• Made fcls for each of these steps 

• All of these for the 1x6x6 VD geometry workspace (i.e 36 charge readout 
modules [CRMs] with one drift volume)

• Detsim uses json config in DUNEWireCell to produce RawDigit products 

• pgrapher/experiment/dune-vd/wcls-sim-drift-simchannel-3view30deg.json

• Worked out of Dom’s refactor branch : feature/dbrailsf_refactor until 
recently

• Using another feature branch off of that for CVN-related development work 
(feature/bnayak_cvnvd) 
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VD Geometry

• 1x6x6 geometry workspace 

• 1 drift volume 

• 298 strips in 2 induction planes

• 304 strips in 1 collection plane

• Checked numbering convention for CRMs 
in the wire-cell detsim vs larsoft and 
they’re consistent
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Reconstruction — Hit 
Finding

• Currently following Slavic’s hit-finder talk for gaus-hit threshold parameters : https://indico.fnal.gov/
event/50066/contributions/219793/attachments/145290/184914/vdfd_hitreco.pdf

• Applied to new 3view30deg design 

• 1st induction plane has higher threshold to deal with pepper-noise issue (discussed previously, solved 
by new wire cell sig-proc parameters. New config should be available soon)
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Reconstruction

• Event dump after wire-cell signal processing (recob::Wire) + gaushit (recob::Hit)
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Event Displays
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• Single fwd going muon
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CVN
• Main module to create pixel map inputs from reconstructed files : 

• Currently uses recob::Hit(s) from gaud-hit to populate 2D image of Wire ID vs TDC for each plane view

• This is handled by the CVNMapper module 

• Takes into account events that cross multiple drift volumes as well (relevant for horizontal drift geometries, not so much 
for our scenario right now) 

• Calls a class `PixelMapProducer` that creates `PixelMap` objects to store in an art event

• Workflow from there is fairly straightforward, uses a `CVNZLibMaker` module to convert these into compressed zip files 
(`.gz` format). Training data saved in separate txt files (`.info` format)

• CVNMapper fcl parameters :  

• WireLength : Set to 2880 for 1x2x6 Horizontal Drift workspace (max z-axis span)

• TimeResolution : Set to 1600 — describes TDC range for pixel map (tdc_mean-1600, tdc_mean+1600)

• TdcWidth : Set to 500 — condenses TDC ticks into 500 bins (Any reason for condensing 1600 to 500 specifically, rather 
than using an exact factor?) 

• For testing purposes, I’m not changing any of these currently except — TimeResolution to 1500.
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CVN

• PixelMapProducer tries to handle events crossing APAs by assigning a global wireID and time tick to 
each hit based on its location in the geometry

• A bit complicated for horizontal drift since multiple drift volumes

• For our case, since there’s only 1, things are somewhat easier

• Global TDC = local TDC

• However, instead of multiple drift volumes we have multiple CRMs, each with a local strip “wireID” 

• Need a method to assign a global wireID here as well

• Collection plane is easy. It’s just : 

• Global wireID = local wireID  + CRM_column*304

• Induction plane is a bit more complicated
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Global Wire IDs

These should  
get assigned  

the same  
global ID

Parallel wires across CRMs 
have the same local WireID
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V Plane

U Plane

• Can’t do what is done for the collection plane.. otherwise you end up with 
pixel maps that look like these

• Have to be a bit smarter about matching wires across CRMs

• Matching is not guaranteed/perfect in the design currently, but we can try 
to use some approximated version
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• illustration of how I’m matching wires across CRMs

• try to match every wire to a corresponding wire on a diagonal CRM

• matching done by looking at closest wire on diagonal CRM in terms of y-intercept

• intercept = (y0 +/- z0/sqrt(3))

Global Wire IDs
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• get local index of matched wire on diagonal CRM by counting wires from the start of the CRM

• checked intercept spacing between neighbouring wires = 8.47 mm (from GDML). 8.47 = 7.335/cos(30deg)

• 7.335mm = wire pitch in this geometry based on the 50L design tested at CERN (These numbers are in flux 
a little bit, but for now it doesn’t matter)

• Get global index of matched wire from local index

Global Wire IDs
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• For wires that project between two diagonal CRMs, I just assign it to the wire in one of the diagonal CRMs 
which it is closest to

• Distance between these end wires across the diagonal CRMs alternate between d = 3.078cm and d = 
1.712cm, so matching error is bounded by d/2

Global Wire IDs
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• Most of the times, the matched wire intercept and the original intercept are the same

• The next frequent error is < 0.847/2 [~half a wire pitch]

• Rarely, error ~1.5 cm [twice the wire pitch] when wires project between diagonal CRMs

• Plans to make this more precise by maybe using variable binning pixel maps depending on where these wires project, 
rather than relying on a “matched” wire

delta = matched_intercept - actual intercept

Global Wire IDs
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Z Plane

• New pixel maps look much more “reasonable”

• Caveats : 

• We see very prominent hairy features, especially in the V plane that doesn’t 
look physical

• Haven’t studied performance of gaushit on the waveforms in a quantitative 
way for this design

• In general, it seems more correct to use the waveforms directly in the pixel 
maps as inputs

Pixel Maps
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Pixel Maps

• Added infrastructure to make pixel maps using waveform 
inputs directly rather than using gaushits

• New class : PixelMapWireProducer inside CVN that uses 
recob::Wire(s) instead of recob::Hits

• Looping through wires, gathering the ROIs and filling the 
pixel map bins with the total charge content

• This looping is not so expensive as it might seem since 
most recob::Wire(s) have no ROI content

• Lives in feature/bnayak_cvnvd currently

• Keeping similar binning with what was done before for 
horizontal drift, but easy to change (=6 tdc ticks/bin)

• Goes through the wire-cell signal processing step : 2D 
deconv step + gaussian filter 

• CVN/art/CVNMapper.fcl
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• Looks smoother than gaushit pixel maps

• U plane is very noisy, this is the same issue Slavic 
mentioned in FD sim/reco and we discussed last week  —> 
should be good with new config (with more appropriate 
electronic response parameters in sigproc chain) 

• Hairiness (in V plane esp.) still exists but doesn’t look as 
bad

Pixel Maps 
using 

Waveforms
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U Plane

• Added a knob for a charge threshold in PixelMapWireProducer as well

• Need a threshold of 6 to get rid of all the noisy hits in the U plane with old config

Pixel Maps using 
Waveforms
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• Dom mentioned on slack that the neutrino simulation using 
dk2nu flux files was up and running

• Tested the pixel maps here as well, seems to be working

• pixel maps stored as zlib-compressed outputs (.gz 
extension) with truth info stored in .info files as text output

• Once we generate a sizeable sample, can copy it to our 
workstations/cluster and train 

Using
Neutrino 

Simulation
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Summary

• CVN would be very useful in testing the design choices currently for the VD

• Workflow seems to be in place for training CVN on VD geometries 

• both for waveform inputs and gaushit inputs

• Still a few things to clean up maybe : 

• Could do things more precisely with the stitching algorithm using matching strip intercepts

• Probably some other intermediate steps/modifications to use CVN training scripts on these `.gz` and 
`.info` outputs

• Logistical questions : 

• Should we start to look at producing a larger training/testing sample on our own? 

• Something for production? Possible timeline/schedule etc? 
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