
CVN for Vertical Drift

Nitish Nayak
13th Sept, 2021

�1

Introduction

• Deciding on a Vertical Drift design is a top priority for
DUNE moving forward

• Multiple options available :

• 2-view : 1 induction, 1 collection — (0, 90) deg

• 3-view : 2 induction, 1 collection — (0, 48, 90) deg
(CDR geometry)

• 3 view : 2 induction, 1 collection — (-30, 30, 90) deg

• 3 views gives us redundancy and in principle better 3D
reconstruction

• Tricky to evaluate the physics case for each design
without developing the whole reconstruction
infrastructure

Z

Y

!2

CVN

• Idea is to use CVN as a possible input to deciding which
design might be better

• Highly performant neutrino ID [https://arxiv.org/abs/
2006.15052]

• Just uses images of hit clusters as inputs ->
downstream reco not necessary

• Can help us quantify differences in performance
between different designs

• Preliminary study on this in Oct 2020 by Sandro, Saul et
al. :

• Used horizontal drift simulation, trainings done for 1-
view, 2-view, 3-view options by manually removing one
of the view inputs each time

• Interesting results showing small drop in performance
across the trainings

https://indico.cern.ch/event/864638/contributions/4041234/
attachments/2132971/3592132/SP-EPNU-29oct20.pdf

!3

https://arxiv.org/abs/2006.15052
https://arxiv.org/abs/2006.15052

VD Simulation

• fcls exist for the 2-view and CDR reference geometry — (0, 48, 90) deg

• For the other 3-view design, geometry workspace already created and wire-
cell simulation already setup by Slavic/Haiwang

• Made fcls for each of these steps

• All of these for the 1x6x6 VD geometry workspace (i.e 36 charge readout
modules [CRMs] with one drift volume)

• Detsim uses json config in DUNEWireCell to produce RawDigit products

• pgrapher/experiment/dune-vd/wcls-sim-drift-simchannel-3view30deg.json

• Worked out of Dom’s refactor branch : feature/dbrailsf_refactor until
recently

• Using another feature branch off of that for CVN-related development work
(feature/bnayak_cvnvd)

!4

VD Geometry

• 1x6x6 geometry workspace

• 1 drift volume

• 298 strips in 2 induction planes

• 304 strips in 1 collection plane

• Checked numbering convention for CRMs
in the wire-cell detsim vs larsoft and
they’re consistent

!5

Reconstruction — Hit
Finding

• Currently following Slavic’s hit-finder talk for gaus-hit threshold parameters : https://indico.fnal.gov/
event/50066/contributions/219793/attachments/145290/184914/vdfd_hitreco.pdf

• Applied to new 3view30deg design

• 1st induction plane has higher threshold to deal with pepper-noise issue (discussed previously, solved
by new wire cell sig-proc parameters. New config should be available soon)

!6

https://indico.fnal.gov/event/50066/contributions/219793/attachments/145290/184914/vdfd_hitreco.pdf
https://indico.fnal.gov/event/50066/contributions/219793/attachments/145290/184914/vdfd_hitreco.pdf
https://indico.fnal.gov/event/50066/contributions/219793/attachments/145290/184914/vdfd_hitreco.pdf

Reconstruction

• Event dump after wire-cell signal processing (recob::Wire) + gaushit (recob::Hit)

!7

Event Displays

LArSoft
Run: 20000014/0
Event: 1

UTC Sun Jan 3, 1982
06:49:11.659506368 4000 4050 4100 4150 4200 4250 4300 4350 4400 4450 4500

t [ticks]

10−
0

10
20
30
40
50
60

q
[A

D
C]

0 50 100 150 200 250 300 3504000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

0 50 100 150 200 250 300 350

4000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

0 50 100 150 200 250 300 350

4000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

LArSoft
Run: 20000014/0
Event: 1

UTC Sun Jan 3, 1982
06:49:11.659506368 4000 4050 4100 4150 4200 4250 4300 4350 4400 4450 4500

t [ticks]

60−
40−
20−
0

20
40
60
80

100

q
[A

D
C]

0 50 100 150 200 250 300 3504000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

0 50 100 150 200 250 300 350

4000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

0 50 100 150 200 250 300 350

4000

4050

4100

4150

4200

4250

4300

4350

4400

4450

4500

CRP #3 CRP #9

• Single fwd going muon

!8

CVN
• Main module to create pixel map inputs from reconstructed files :

• Currently uses recob::Hit(s) from gaud-hit to populate 2D image of Wire ID vs TDC for each plane view

• This is handled by the CVNMapper module

• Takes into account events that cross multiple drift volumes as well (relevant for horizontal drift geometries, not so much
for our scenario right now)

• Calls a class `PixelMapProducer` that creates `PixelMap` objects to store in an art event

• Workflow from there is fairly straightforward, uses a `CVNZLibMaker` module to convert these into compressed zip files
(`.gz` format). Training data saved in separate txt files (`.info` format)

• CVNMapper fcl parameters :

• WireLength : Set to 2880 for 1x2x6 Horizontal Drift workspace (max z-axis span)

• TimeResolution : Set to 1600 — describes TDC range for pixel map (tdc_mean-1600, tdc_mean+1600)

• TdcWidth : Set to 500 — condenses TDC ticks into 500 bins (Any reason for condensing 1600 to 500 specifically, rather
than using an exact factor?)

• For testing purposes, I’m not changing any of these currently except — TimeResolution to 1500.
!9

CVN

• PixelMapProducer tries to handle events crossing APAs by assigning a global wireID and time tick to
each hit based on its location in the geometry

• A bit complicated for horizontal drift since multiple drift volumes

• For our case, since there’s only 1, things are somewhat easier

• Global TDC = local TDC

• However, instead of multiple drift volumes we have multiple CRMs, each with a local strip “wireID”

• Need a method to assign a global wireID here as well

• Collection plane is easy. It’s just :

• Global wireID = local wireID + CRM_column*304

• Induction plane is a bit more complicated

!10

Global Wire IDs

These should
get assigned

the same
global ID

Parallel wires across CRMs
have the same local WireID

800 850 900 950 1000 1050 1100 1150 1200 1250
Wire

180

200

220

240

260

280

Td
c

PixelMap_X_r20000014_s0_e1_sl0

Entries 1440000
Mean x 986.8
Mean y 237.6
Std Dev x 30.77
Std Dev y 13.38

0

200

400

600

800

1000

1200

1400

PixelMap_X_r20000014_s0_e1_sl0

Entries 1440000
Mean x 986.8
Mean y 237.6
Std Dev x 30.77
Std Dev y 13.38

850 900 950 1000 1050 1100 1150 1200
Wire

180

200

220

240

260

280

300

Td
c

PixelMap_Y_r20000014_s0_e1_sl0

Entries 1440000
Mean x 952
Mean y 250.1
Std Dev x 28.7
Std Dev y 13.33

0

200

400

600

800

1000

1200

1400
PixelMap_Y_r20000014_s0_e1_sl0

Entries 1440000
Mean x 952
Mean y 250.1
Std Dev x 28.7
Std Dev y 13.33

V Plane

U Plane

• Can’t do what is done for the collection plane.. otherwise you end up with
pixel maps that look like these

• Have to be a bit smarter about matching wires across CRMs

• Matching is not guaranteed/perfect in the design currently, but we can try
to use some approximated version

!11

• illustration of how I’m matching wires across CRMs

• try to match every wire to a corresponding wire on a diagonal CRM

• matching done by looking at closest wire on diagonal CRM in terms of y-intercept

• intercept = (y0 +/- z0/sqrt(3))

Global Wire IDs

!12

• get local index of matched wire on diagonal CRM by counting wires from the start of the CRM

• checked intercept spacing between neighbouring wires = 8.47 mm (from GDML). 8.47 = 7.335/cos(30deg)

• 7.335mm = wire pitch in this geometry based on the 50L design tested at CERN (These numbers are in flux
a little bit, but for now it doesn’t matter)

• Get global index of matched wire from local index

Global Wire IDs

!13

• For wires that project between two diagonal CRMs, I just assign it to the wire in one of the diagonal CRMs
which it is closest to

• Distance between these end wires across the diagonal CRMs alternate between d = 3.078cm and d =
1.712cm, so matching error is bounded by d/2

Global Wire IDs

!14

• Most of the times, the matched wire intercept and the original intercept are the same

• The next frequent error is < 0.847/2 [~half a wire pitch]

• Rarely, error ~1.5 cm [twice the wire pitch] when wires project between diagonal CRMs

• Plans to make this more precise by maybe using variable binning pixel maps depending on where these wires project,
rather than relying on a “matched” wire

delta = matched_intercept - actual intercept

Global Wire IDs

!15

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Wire

180

200

220

240

260

280

300
Td

c
PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 919
Mean y 240.5
Std Dev x 173.5
Std Dev y 3.956

0

200

400

600

800

1000

1200

PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 919
Mean y 240.5
Std Dev x 173.5
Std Dev y 3.956

0 100 200 300 400 500 600 700 800 900
Wire

180

200

220

240

260

280

300

Td
c

PixelMap_Y_r20000014_s0_e2_sl0

Entries 1440000
Mean x 297.3
Mean y 253
Std Dev x 168.1
Std Dev y 3.728

0

200

400

600

800

1000

1200

PixelMap_Y_r20000014_s0_e2_sl0

Entries 1440000
Mean x 297.3
Mean y 253
Std Dev x 168.1
Std Dev y 3.728

U Plane V Plane

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Wire

150

200

250

300

350

400

450Td
c

PixelMap_Z_r20000014_s0_e1_sl0

Entries 1440000
Mean x 893.8
Mean y 249.9
Std Dev x 533.6
Std Dev y 13.45

0

100

200

300

400

500

600

700

800

PixelMap_Z_r20000014_s0_e1_sl0

Entries 1440000
Mean x 893.8
Mean y 249.9
Std Dev x 533.6
Std Dev y 13.45

Z Plane

• New pixel maps look much more “reasonable”

• Caveats :

• We see very prominent hairy features, especially in the V plane that doesn’t
look physical

• Haven’t studied performance of gaushit on the waveforms in a quantitative
way for this design

• In general, it seems more correct to use the waveforms directly in the pixel
maps as inputs

Pixel Maps

!16

Pixel Maps

• Added infrastructure to make pixel maps using waveform
inputs directly rather than using gaushits

• New class : PixelMapWireProducer inside CVN that uses
recob::Wire(s) instead of recob::Hits

• Looping through wires, gathering the ROIs and filling the
pixel map bins with the total charge content

• This looping is not so expensive as it might seem since
most recob::Wire(s) have no ROI content

• Lives in feature/bnayak_cvnvd currently

• Keeping similar binning with what was done before for
horizontal drift, but easy to change (=6 tdc ticks/bin)

• Goes through the wire-cell signal processing step : 2D
deconv step + gaussian filter

• CVN/art/CVNMapper.fcl

!17

0 100 200 300 400 500 600 700 800
Wire

200

220

240

260

280

Td
c

PixelMap_Y_r20000014_s0_e2_sl0

Entries 1440000
Mean x 297.1
Mean y 252.3
Std Dev x 168.1
Std Dev y 3.763

0

100

200

300

400

500

600

700

PixelMap_Y_r20000014_s0_e2_sl0

Entries 1440000
Mean x 297.1
Mean y 252.3
Std Dev x 168.1
Std Dev y 3.763

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Wire

180

200

220

240

260

280

300

Td
c

PixelMap_Z_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.2
Mean y 250.5
Std Dev x 511.7
Std Dev y 3.741

0

100

200

300

400

500

PixelMap_Z_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.2
Mean y 250.5
Std Dev x 511.7
Std Dev y 3.741

0 200 400 600 800 1000 1200 1400 1600
Wire

0

50

100

150

200

250

300

350

400

450

500
Td

c
PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.3
Mean y 242.1
Std Dev x 300.8
Std Dev y 106.3

0

100

200

300

400

500

600

700

800

900
PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.3
Mean y 242.1
Std Dev x 300.8
Std Dev y 106.3

U Plane V Plane

Z Plane

• Looks smoother than gaushit pixel maps

• U plane is very noisy, this is the same issue Slavic
mentioned in FD sim/reco and we discussed last week —>
should be good with new config (with more appropriate
electronic response parameters in sigproc chain)

• Hairiness (in V plane esp.) still exists but doesn’t look as
bad

Pixel Maps
using

Waveforms

!18

0 200 400 600 800 1000 1200 1400 1600
Wire

0

50

100

150

200

250

300

350

400

450

500

Td
c

PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.3
Mean y 242.1
Std Dev x 300.8
Std Dev y 106.3

0

100

200

300

400

500

600

700

800

900
PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 914.3
Mean y 242.1
Std Dev x 300.8
Std Dev y 106.3

500 600 700 800 900 1000 1100 1200 1300
Wire

180

200

220

240

260

280

300

Td
c

PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 940.7
Mean y 247.8
Std Dev x 172.6
Std Dev y 3.456

0

100

200

300

400

500

600

700

800

900
PixelMap_X_r20000014_s0_e2_sl0

Entries 1440000
Mean x 940.7
Mean y 247.8
Std Dev x 172.6
Std Dev y 3.456

U Plane

U Plane

• Added a knob for a charge threshold in PixelMapWireProducer as well

• Need a threshold of 6 to get rid of all the noisy hits in the U plane with old config

Pixel Maps using
Waveforms

!19

0 100 200 300 400 500 600 700 800
Wire

160

180

200

220

240

260

280

300

320

340Td
c

PixelMap_Y_r20000001_s0_e1_sl0

Entries 1440000
Mean x 297.4
Mean y 249.2
Std Dev x 124.2
Std Dev y 7.836

0

100

200

300

400

500

600

700
PixelMap_Y_r20000001_s0_e1_sl0

Entries 1440000
Mean x 297.4
Mean y 249.2
Std Dev x 124.2
Std Dev y 7.836

0 500 1000 1500 2000 2500
Wire

180

200

220

240

260

280

300

320Td
c

PixelMap_Z_r20000001_s0_e1_sl0

Entries 1440000
Mean x 999.7
Mean y 250.7
Std Dev x 389.9
Std Dev y 7.775

0

50

100

150

200

250

PixelMap_Z_r20000001_s0_e1_sl0

Entries 1440000
Mean x 999.7
Mean y 250.7
Std Dev x 389.9
Std Dev y 7.775

1100 1200 1300 1400 1500 1600 1700 1800
Wire

300

320

340

360

380

400

420Td
c

PixelMap_X_r20000001_s0_e1_sl0

Entries 1440000
Mean x 1386
Mean y 348.3
Std Dev x 153.1
Std Dev y 19.88

0

100

200

300

400

500

PixelMap_X_r20000001_s0_e1_sl0

Entries 1440000
Mean x 1386
Mean y 348.3
Std Dev x 153.1
Std Dev y 19.88

U Plane
V Plane

Z Plane

• Dom mentioned on slack that the neutrino simulation using
dk2nu flux files was up and running

• Tested the pixel maps here as well, seems to be working

• pixel maps stored as zlib-compressed outputs (.gz
extension) with truth info stored in .info files as text output

• Once we generate a sizeable sample, can copy it to our
workstations/cluster and train

Using
Neutrino

Simulation

!20

Summary

• CVN would be very useful in testing the design choices currently for the VD

• Workflow seems to be in place for training CVN on VD geometries

• both for waveform inputs and gaushit inputs

• Still a few things to clean up maybe :

• Could do things more precisely with the stitching algorithm using matching strip intercepts

• Probably some other intermediate steps/modifications to use CVN training scripts on these `.gz` and
`.info` outputs

• Logistical questions :

• Should we start to look at producing a larger training/testing sample on our own?

• Something for production? Possible timeline/schedule etc?

!21

