
WELCOME to NuSTEC Workshop

Improving the art of neutrino nuclei modelling with charged lepton scattering data

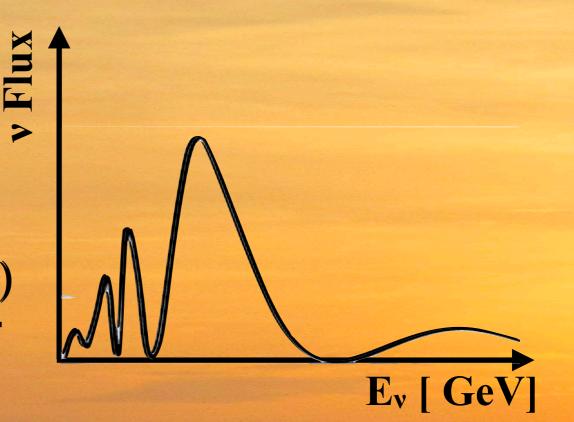
Our Challenge

Extract neutrino oscillation mixing parameters by measuring:

N(E,L)

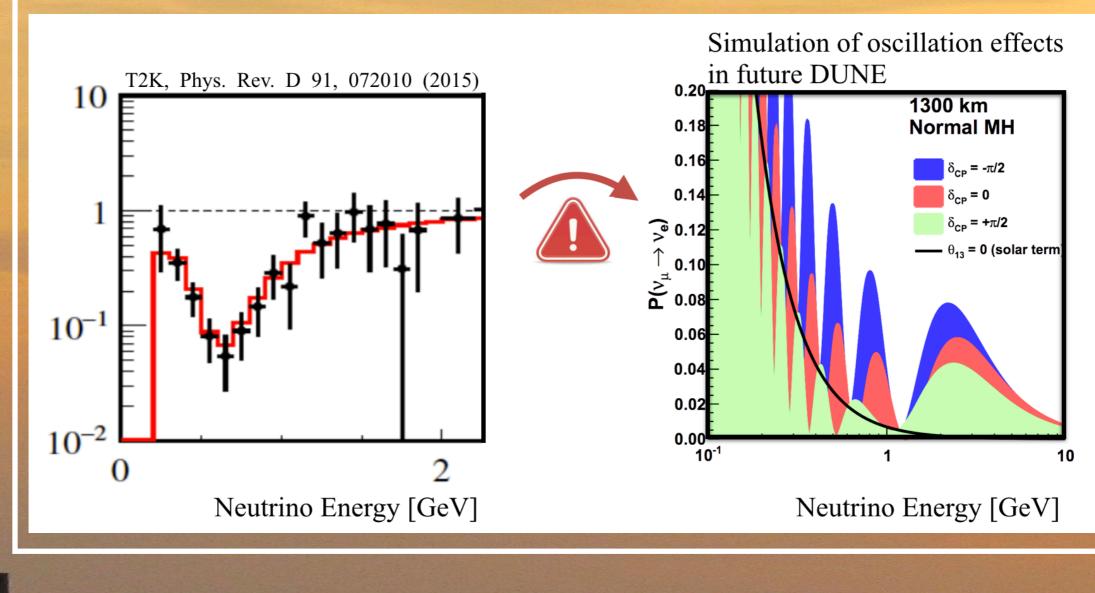
NuSTEC workshop Improving vA modeling with charged lepton data

×


Our Challenge

When in fact the actual

measurements is:


 $N(E_{rec},L) \propto \int \phi(E,L)\sigma(E)f(E,E_{rec})$

Modeling Input

NuSTEC workshop Improving vA modeling with charged lepton data

The challenge - next generation high precision

NuSTEC workshop Improving vA modeling with charged lepton data

¥

Using Charged Leptons to Improve vA Modelling

- Charged and neutral leptons have:
 - Similar interactions with nuclei
 - Vector vs. Vector + Axial Vector
 - Many identical nuclear effects
 - Ground state (spectral function)
 - Final state interactions

Charged leptons can have known energies NuSTEC workshop Improving vA modeling with charged lepton data

The Way to Improve Modelling Input

THEORY

GENERATORS

 $\sigma(E)f(E, E_{rec})$

ERMENTIC

NuSTEC workshop Improving vA modeling with charged lepton data

×

Ways to Improve Modelling Input

THEORY

GENERATORS

Models /

 $\sigma(E)f(E, E_{rec})$

Empirical Models Input for tuning

NuSTEC workshop Improving vA modeling with charged lepton data

Tel Aviv University

A A

University 28/3/22 - 31/3/22

Ways to Improve Modelling Input

THEORY

GENVERATORS

 $\sigma(E)f(E, E_{rec})$

Testing models

RIMENTIC

NuSTEC workshop Improving vA modeling with charged lepton data

A A

Ways to Improve Modelling Input

 $N^{on} - N^{off} - B$

 $\eta \cdot \phi \cdot N_{targets}$

The background & efficiencies are model dependent

THEORY

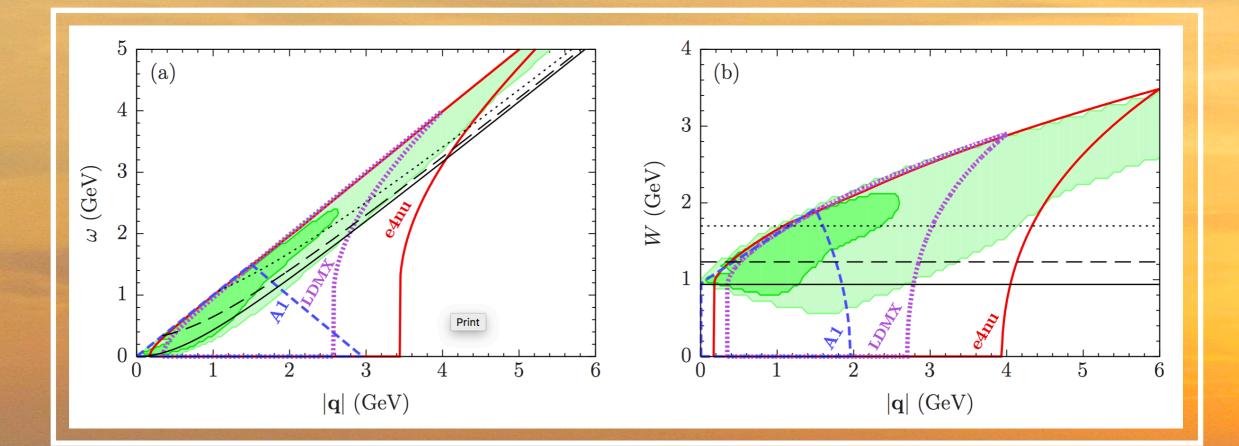
GENERATORS

 $\sigma(E)f(E, E_{rec})$

NuSTEC workshop Improving vA modeling with charged lepton data

×

Experimental Efforts


Collaborations	Kinematics	Targets	Scattering
E12-14-012 (JLab)	$E_e = 2.222 \text{ GeV}$	Ar, Ti	(e,e')
(Data collected: 2017)	$15.5^\circ \leq \theta_e \leq 21.5^\circ$	AI, C	e,p
	$-50.0^{\circ} \le \theta_p \le -39.0^{\circ}$		in the final state
e4nu/CLAS (JLab)	$E_e = 1$, 2, 4, 6 GeV	H, D, He,	(e,e')
(Data collected: 1999, 2022)	$\theta_e > 5^{\circ}$	C, Ar, 40 Ca,	e,p,n,π,γ
		⁴⁸ Ca, Fe, Sn	in the final state
LDMX (SLAC)	$E_e = 4.0, 8.0 \text{ GeV}$		(e,e')
(Planned)	$\theta_e < 40^{\circ}$	W, Ti, Al	e,p,n,π,γ
,			in the final state
A1 (MAMI)	50 MeV $\leq E_e \leq 1.5$ GeV	H, D, He	(e,e')
(Data collected: 2020)	$7^{\circ} \le \theta_e \le 160^{\circ}$	C, O, Al	2 additional
(More data planned)		Ca, Ar, Xe	charged particles
A1 (eALBA)	$E_e = 500 \text{ MeV}$	C, CH	(e,e')
(Planned)	- few GeV	Be, Ca	
(Planned)	- few GeV	Be, Ca	

NuSTEC workshop Improving vA modeling with charged lepton data

SHARE SHARE

Electron Scattering and Neutrino Physics, Snowmass white paper arXiv:2203.06853 [hep-ex]

Complementary efforts

NuSTEC workshop Improving vA modeling with charged lepton data

*

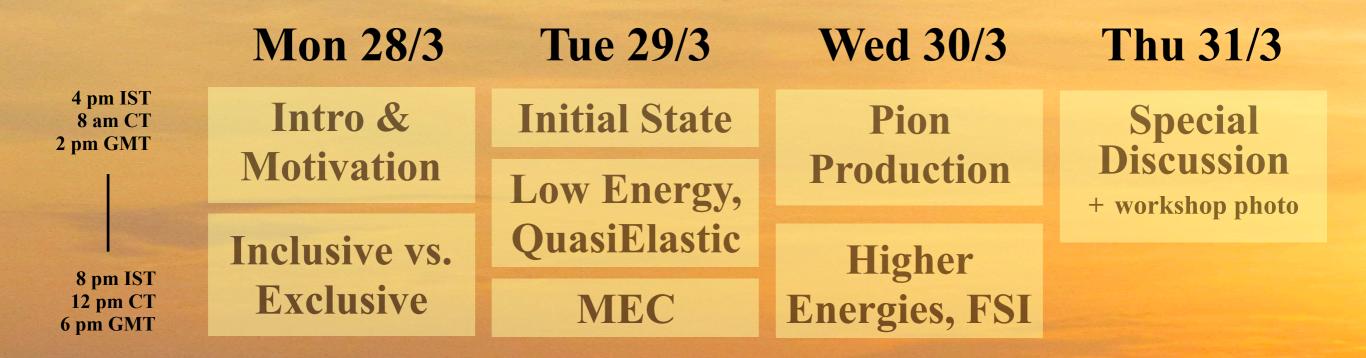
Electron Scattering and Neutrino Physics, Snowmass white paper arXiv:2203.06853 [hep-ex]

Workshop Goals

- Gather experts from both nuclear and neutrino and electron communities: Theorists, Experimentalists, Event generator experts.
 - Showcase the most recent developments
 - Facilitate knowledge sharing

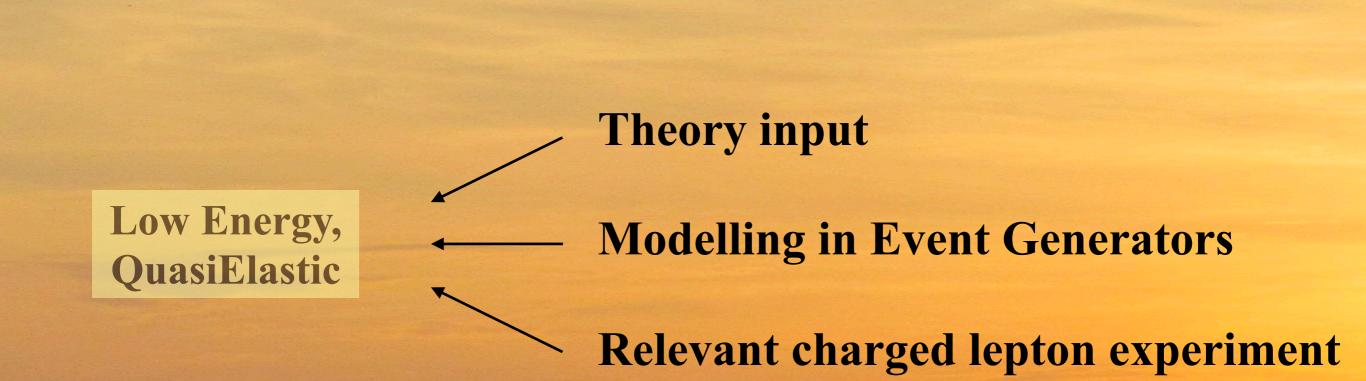
NuSTEC workshop Improving vA modeling with charged lepton data

Workshop Goals


- Gather experts from both nuclear and neutrino and electron communities: Theorists, Experimentalists, Event generator experts.
 - Showcase the most recent developments
 - Facilitate knowledge sharing
- Clarify requirements for present and next-gen accelerator based neutrino experiments.
- Coordinate the efforts between electron and neutrino physics sectors
 - Map and prioritise the needs from: the theory community, event generators and electron scattering experiments.

NuSTEC workshop Improving vA modeling with charged lepton data

¥.


Get ready for coming tuning efforts

Workshop Schedule

NuSTEC workshop Improving vA modeling with charged lepton data

In Each Block

NuSTEC workshop Improving vA modeling with charged lepton data Each talk is 15+5 minutes Please keep the schedule & upload your slides in advance

In Each Block

Please Join our new slack channel using this <u>link</u> During the week we expect discussion to occur also there

NuSTEC workshop Improving vA modeling with charged lepton data

*

Thanks to the organisers

Luca Doria Minerba Betancourt Noemi Rocco Raúl González Jiménez Joshua L. Barrow Paola Sala Adi Ashkenazi From NuSTEC: Natalie Jachowicz Jonathan Paley NuSTEC workshop & school: Artur Ankowski Clarence Wret Adi Ashkenazi

NuSTEC workshop Improving vA modeling with charged lepton data

and Thank You All for Joining Let's get charged!

