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Challenge for nuclear models and cross section analysis: How to
improve understanding of ν − A interactions for oscillation analysis?

➠ Improve theory: FSI, ground states, PB and shell effects (Eb), nuclear potentials, etc.
➠ Use external constraints (e, e′), (e, e′p) to characterize nuclear effects and improve model
selection in ν event generators
➠ Compare several nuclear models with e- and nu − A inclusive (lepton detection), semi-inclusive
(l + N, l + π) and more exclusive (l + p + π) cross section measurements
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Challenge for nuclear models and cross section analysis: How to
improve understanding of ν − A interactions for oscillation analysis?

➠ Improve theory: FSI, ground states, PB and shell effects (Eb), nuclear potentials, etc.
➠ Use external constraints (e, e′), (e, e′p) to characterize nuclear effects and improve model
selection in ν event generators
➠ Compare several nuclear models with e- and nu − A inclusive (lepton detection), semi-inclusive
(l + N, l + π) and more exclusive (l + p + π) cross section measurements

Neutrino- and electron-nucleus scattering are connected (CVC) to each other and a reliable model
must be able to describe both processes. Neutrinos can probe both V and A nuclear responses,
unlike electrons which are only sensitive to the V response.

Differential ν− A cross section χ = +(−) ≡ νµ(ν̄µ)

[

dσ

dkµdΩµ

]

χ

= σ0 [VLRL + VT RT + χ (2VT ′ RT ′ )]

VLRL = VCC RCC + 2VCLRCL + VLLRLL

RL = RVV
L

+ RAA
L

; RT = RVV
T

+ RAA
T

; RT ′ = RVA
T ′

See M. Barbaro’s talk for more details.

Comparison with (e, e′) reactions
[

dσ

dkµdΩ

]

= σMott

(

vLRVV
L + vT RVV

T

)

; σMott =
α2 cos2 θ/2

4Ei sin4 θ/2

See M. Barbaro’s talk for more details.
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Neutrino-Nucleus Interaction Models in the market

➠ Relativistic Fermi Gas (RFG): nucleus as a system of non-interacting on-shell nucleons. Bound nucleons below pF .

Too simple. Used for most 2p2h models. Easily extendable to all nuclei.

➠ Local Fermi Gas (LFG): RFG extension with local density approx (n(p) depends on nucleon position, nuclear finite

size effects). Used in NEUT and GENIE. Bad agreement with (e,e’) data.

➠ Spectral Function (SF): based on the factorization ansatz (σν−N · S(p, Eb)) where S represents the probability of

finding a nucleon (p, Eb) within the nucleus. Semiphenomenological based on (e,e’p) data, mean-field calculations and LFG. Shell

model. Non relativistic. Implemented in NEUT.

➠ Random Phase Approximation (RPA): can be added to the top of LFG/SF/HF/MF to incorporate NN correla-

tions. Very accurate description at low q0 , Q2 but not relativistic.

➠ Ab initio calculations: QMC calculations based on Green’s function MC methods. Acurate treatment of nuclear

dynamics. Not fully relativistic.

➠ Relativistic Mean Field (RMF, ED-RMF, SuSAv2): Fully relativistic shell model with accurate description

of nuclear dynamics and FSI effects. Bound nucleons: self-consistent Dirac-Hartree solutions, derived within a RMF Lagrangian

with local relativistic potentials (S+V) fitted to saturation properties of nuclear matter, radii and nuclear masses. Valid for 1p1h

and SPP (π), easily extendable to all nuclei.
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Testing SuperScaling for 12C(e, e′) in different nuclear models

The SuSAv2 model PRC90, 035501 (2014) PRD94, 013012 (2016)

✪ SuSAv2 model: lepton-nucleus reactions adressed in the SuperScaling Approach and based on Relativistic Mean Field (RMF)
theoretical scaling functions (FSI) to reproduce nuclear dynamics.

✪ RMF: Good description of the QE (e, e′) data and superscaling properties (f ee′

L,exp
). RMF predicts fT > fL (∼ 20%)

as a pure relativistic effect (FSI with the residual nucleus). Strong RMF potentials at high q3 are corrected by RPWIA and
q-dependent blending function.

f (ψ) ≡ f (q, ω) ∼

σQE (nuclear
effects

)

σsingle nucleon(no nuclear
effects

)
; f (ψ

′
) = kF

(

d2
σ

dΩedω

)

exp

σMott (vLGee′

L
+ vT Gee′

T
)
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Comparison with CC0π νµ-nucleus data
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CCQE ν inclusive cross sections with different models

Different models can give similar inclusive CS but different semi-inclusive ones (more sensitive
to nuclear-medium effects) ⇒ very different ν oscillation analyses (which relies on semi-inclusive predictions)

THE FUTURE IS SEMI-INCLUSIVE ⇒ Best way to produce consistent theory-vs-data compar-
ison. Less dependency on simulations and deeper analysis of model nuclear effects.

PROBLEM: Current lack of full semi-inclusive models and proper implementation in generators.

Semi-inclusive ⇒ Inclusive (but not viceversa) ⇒ Factorization approach is questionable.
- QE and 2p2h inclusive: We only need W µν (q, ω) or, equivalently, W µν (pµ, cos θµ)
- QE semi-inclusive : 5D diff. CS (θµ, pµ, pN , θN , φN ) - 2p2h semi-inclusive: 9D diff. CS.
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SuSAv2-MEC implementation in MC event generators arXiv:1905.08556

1st step: Implemented the SuSAv2 1p1h and 2p2h models in GENIEv3 for both (e, e′) and CC νµ scattering. Next step:

Implementation in NEUT.

➲ New 1p1h and 2p2h model calculated using pre-computed hadron tensors for (e, e′) and CC ν reactions. Global factor /
lepton tensor are easily calculated - shared by other models. Use of a GENIE’s bilinear interpolation function to evaluate specific
q0 , q3 values. Hadron tensors are initially provided for a few targets (C and O so far, may add others). Can easily scale to other
nuclei.
2nd step: Adding SuSAv2 formulas, parameters and parametrization of scaling functions into generators to speed up simulations

and to allow reweighting (MQE
A

, pF , Eb , etc.). Introducing RMF nucleon momentum distribution in generators to fully test

factorization approach.

3rd step: Implement full RMF semi-inclusive model in generators

*Adapted from S. Dolan’s talk at GENIE Meeting (02/2019)
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Comparison between 1p1h+2p2h models in generators arXiv:1905.08556
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Comparison of SuSAv2-MECGenie with ValenciaGenie 2p2h arXiv:1905.08556

Differences in np/pp separation are mostly related to the treatment of 2p2h direct/exchange
interference terms (absent in Nieves model) → strongly affects np/pp ratio by a factor ∼

2 (PRC94:054610,2016) ⇒ Implications in nucleon multiplicity and hadron Ereco

See J.E. Amaro’s talk on Wednesday for more details about 2p2h.
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Low-energy effects at T2K CC0π 0p >500 MeV/c arXiv:1905.08556

Low-energy effects and scaling violations are only appreciable at very forward angles (low q3, q0

values). RMF is more accurate than SuSAv2 at these kinematics.
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Low-energy nuclear effects and its proper description can have an important effect in
the C to O extrapolation, which is essential for T2K and HK.
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T2K CC0π νµ−H2O cross sections arXiv:1711.00771 [nucl-th] (2017)
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RMF models could reveal C/O differences due to different binding energy and shell

effects, mass of the residual nucleus, FSI and Coulomb distortions, etc.
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d2σ/dpµ/d cos θµ vs. pµ: SuSAv2 and RMF (top) vs NEUT SF (bottom)
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Large differences between 12C and 16O emerges at very forward angles (low-energy
region) within the RMF model due to different nuclear effects (binding energies of the
different shells and different S+V nuclear potentials).

SF (12C) ∼ RMF (12C) SF (16O) > RMF (16O) at low-kinematics

SF curves: Red (12C), Blue (16O)
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ED-RMF, RMF, SuSAv2 for (e, e′)12C d2σ/dΩ/dω vs. ω
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✪ SuSAv2 is an inclusive model where scaling violations and low-energy effects from RMF (semi-inclusive) are not fully included.

✪ Strong q-dependence of RMF vector and scalar potentials at high kinematics is addressed in SuSAv2 with a blending function
to introduce RPWIA (no FSI). To have a more consistent model and preserve orthogonality, unitarity and dispersion relations ⇒

Solution: ED-RMF (both inclusive and semi-inclusive for 12C, 16O, 40Ar, etc.)

✪ Solution: ED-RMF model (both inclusive and semi-inclusive for 12C, 16O, 40Ar, etc.) introduces an Energy-Dependent
potential (based on SuSAv2) to the RMF to keep strength for low pN while making RMF potential softer for increasing pN .
(PRC 100, 045501 (2019),PRC 101, 015503 (2020))
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RMF semi-inclusive formalism vs. NEUT SF

Lµν H
µν

κ
(RMF): nuclear tensor contraction (nuclear effects included)

for each shell (κ)

SF Factorization approach assumes non-relativ. outgoing N with no FSI

d5σ

dΩ′

l
dΩN dE ′

l

∼ S(Em)Lµν W
µν

Lµν W µν (SF): single nucleon tensor contraction (no nuclear effects)

RMF is not based on the SF factorization approach.
SF is based on the factorization: single nucleon plane
wave (no FSI) CS multiplied by a phenonemological
(e, e′p) S(Em), which can be ok at high energies.

At low energies, it is necessary to consider distorted
waves and nuclear effects (FSI, PB, Eb , etc.). These
effects can be added on the top of SF using some ap-
proaches.

RMF includes all these quantum effects in a natural
way as they arises from solving Dirac equation and
considering nuclear potentials and nuclear matter prop-
erties.

RMF SF S(Em) can be described just using the fixed
Eb values for each shell or via a NEUT-SF like distri-
bution but centered on the RMF Eb values.
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Testing the factorization approach on CC0πNp T2K data arXiv:1905.08556
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Analysis of FSI effects at T2K CC0π and CC0πNp data (J.F. Franco-Patino et al (in preparation))
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Inclusive total cross section ⇒ ∆-scaling model

Extension of the SuSA approach into the non-QE region, obtained by substracting the
QE + 2p-2h MEC + HR and DIS contributions from the total cross section ⇒ assuming
that it is dominated by the ∆-resonance.

(

d2σ
dΩdω

)non−QE

=

(

d2σ
dΩdω

)exp

−

(

d2σ
dΩdω

)QE,SuSAv2

1p1h

−

(

d2σ
dΩdω

)MEC

2p2h

−

(

d2σ
dΩdω

)SuSAv2

HR+DIS

f ∆(ψ∆) = kF

(

d2
σ

dΩdω

)non−QE

σM (vLG∆
L

+vT G∆
T

)

Scaling works well up to the

center of the ∆ peak, ψ∆ = 0,

while it breaks at higher

energies where other inelastic

processes appear ⇒ Error band

J. Gonzalez-Rosa et al. https://arxiv.org/abs/2203.12308
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Inelastic Nuclear Responses within the SuSAv2 Approach

➲ Extension of the SuSAv2 formalism to the complete inelastic spectrum ⇒ resonant (∆),
nonresonant and deep inelastic scattering (DIS).

RL,T
QE

=
N ξF

η3
F
κmN

RL,T
s.n. f

L,T
SuSAv2

(qQE
0 , ψ′) ; RL,T

inel
=

N ξF

η3
F
κ

∫

dµXµX RL,T
inel(s.n.)

f L,T
SuSAv2

(qinel
0 , ψ′

X ),

µX = WX
mN

: dimensionless invariant mass, ψ′

X
: inelastic scaling variable, and UL,T

inel
depends on

the single-nucleon inelastic structure functions W1,W2,W3 (≡ F1,F2,F3), obtained by using:

- Fits of the inelastic structure functions (Bodek-Ritchie, Bosted-Christy, ...)

- PDFs (GRV98 model, ...)

J. Gonzalez-Rosa et al. https://arxiv.org/abs/2203.12308
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Inelastic Nuclear Responses & SuSAv2-inelastic model

Inelastic structure functions
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Bodek-Ritchie: poor description of
the resonance region.

Bosted-Christy: Good description

of the resonant structures observed

in (e,e’) reactions.

GRV98: No resonant structures

(average) and poor description at

Q2 . 1 GeV2.
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SuSAv2-inelastic model for neutrinos

J. Gonzalez-Rosa et al. https://arxiv.org/abs/2203.12308
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SuSAv2-inelastic model for neutrinos vs. ArgoNEUT
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Summary and Conclusions (To be modified)

➲ Neutrino-nucleus interactions are essential for ν oscillation experiments (T2K, SK), being
one of the major sources of current systematics.

➲ The extrapolation to other nuclei (C, O, Ar) will be essential for future experiments such
as HyperK as well as to analyze nuclear-medium uncertainties and inconsistencies between
experiments, such as NOvA or MINERvA.

➲ Forthcoming measurements in water (T2K WAGASCI and NINJA experiments) will be
very useful to validate nuclear models already present in generators.

➲ Collaboration between experimentalists, generator developers and theorists is essential to
reduce systematics, improve models in MC event generators and gain sensitivity to determina-
tion of oscillation parameters, CPV, NMH.

➲ Validation against (e, e′) data is a solid benchmark for nuclear models in ν experiments.
Superscaling is a valuable tool to connect electron and neutrino scattering.

➲ Analysis of semi-inclusive reactions (more sensitive to nuclear model details) is essential for
ν oscillation experiments and will help to analyze physics of theoretical models and provide
more consistent theory-vs-data comparisons. Different models can give similar inclusive CS but
different exclusive ones.

➲ Satisfactory comparison of SuSAv2-MEC and RMF models with (e, e′) and (ν, l) inclusive
and semi-inclusive data for C, O and other nuclei makes them promising candidate for this
purpose.
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RMF, ED-RMF and SuSAv2 models arXiv:1904.10696

✪ SuSAv2 is an inclusive model where scaling violations and low-energy effects present in RMF
(semi-inclusive) are not fully included.

✪ Strong q-dependence of RMF vector and scalar potentials at high kinematics is addressed
in SuSAv2 with a blending function to introduce RPWIA (no FSI). To have a more consistent
model and preserve orthogonality, unitarity and dispersion relations ⇒ Solution: ED-RMF (both
inclusive and semi-inclusive for 12C, 16O, 40Ar, etc.)

✪ Solution: ED-RMF model (both inclusive and semi-inclusive for 12C, 16O, 40Ar,
etc.) introduces an Energy-Dependent potential (based on SuSAv2) to the RMF
to keep strength for low pN while making RMF potential softer for increasing pN .
(PRC 100, 045501 (2019),PRC 101, 015503 (2020))

RMF and ED-RMF are available for 1p1h and SPP, easily extendable to all nuclei. See also PRC100, 045501 (2019), PRC101,

015503 (2020), and A. Nikolakopoulos’ talk.

SuSAv2-MEC 2p2h model is based on RFG microscopic calculations as most 2p2h models (Va-
lencia, Martini, etc.)
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