

Neutrino related data from Mainz

Miha Mihovilovič for A1-Collaboration

Motivation - Neutrino experiments

- The properties of neutrinos determined through the measurement of probability of flavor oscillation:

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) \simeq \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)
$$

- The probability is maximized, when:

$$
E \approx \frac{\Delta m^{2} L}{(4 n+2) \pi}
$$

- The amplitude of the oscillation:

$$
P_{\max } \propto \sin ^{2} 2 \theta
$$

Motivation - E12-14-012

- Successful experiment performed at Jefferson Lab.
- Inclusive (and exclusive) data collected for C, Al, Ar, Ti targets at 2.2 GeV and 15.5°.

- Experiment confirmed approximate scaling.

Coulomb Sum Rule - ${ }^{16} \mathrm{O}$

- Coulomb sum rule for Oxygen using coupled cluster theory (S. Bacca) .

- Theory extendable to ab-initio studies of neutrino-nucleus cross-sections.
- No data exist!

The Mainz Timeline

- 2017 - Letter-of-intent for an inclusive + exclusive measurement on Argon approved by PAC.
- 2019 - First test measurements on ${ }^{12} \mathrm{C}$.
- 2020 - Full proposal for inclusive experiment on ${ }^{16} \mathrm{O}$ approved by PAC.
- 2020 - Full experimental agenda on ${ }^{12} \mathrm{C}$.
- 2021 - Full experiment on ${ }^{40} \mathrm{Ar}$ with Jet target.
- 2022 - First (parasitic) measurements on ${ }^{40} \mathrm{Ca}$.
- 2025 - Experiment on ${ }^{16} \mathrm{O}$?

New Mainz Data - ${ }^{12} \mathrm{C}$

- Experimental agendas during the commissioning of Jet target and other experiments.
- Data available at: $600 \mathrm{MeV}\left(25^{\circ}, 28.8^{\circ}, 36^{\circ}, 60^{\circ}\right), 315 \mathrm{MeV}\left(36^{\circ}, 60^{\circ}\right)$ and $855 \mathrm{MeV}\left(70^{\circ}\right)$

New Mainz Data $-{ }^{40} \mathrm{Ar}$

- Data available at: $\mathbf{7 0 0} \mathbf{M e V}\left(20^{\circ}, 32^{\circ}\right), 240 \mathrm{MeV}\left(20^{\circ}\right)$
- Validation of Frascati results.

Challenging experiment

- Experiment performed with a windowless hypersonic gas-jet target developed for MAGIX
- No Luminosity of $\sim 10^{35} / \mathrm{cm}^{2} \mathrm{~s}$ at $\mathrm{T}=8 \mathrm{~K}$.
- Gas flow 800 I/min.
- Precise luminosity monitoring required.

Argon analysis

- Experiment and analysis led by Max Littich and Luca Doria.
- Study of the luminosity and analysis of experimental cuts completed.

- Next steps: Comparison with the simulation, study of radiative corrections

Results of Pilot Carbon Experiment

- Proof-of-principle measurement at $855 \mathrm{MeV}\left(70^{\circ}\right)$
- SUSAv2 model agrees well with the data
- Other calculations qualitatively agree with the data.
- Consistent QE calculations.

Scaling formalism at $q=0.8 \mathrm{GeV}$

- Measured cross-sections compared to the existing data via scaling variables and functions:

$$
\psi^{\prime} \equiv \frac{1}{\sqrt{\xi_{F}}} \frac{\lambda^{\prime}-\tau^{\prime}}{\sqrt{\left(1+\lambda^{\prime}\right) \tau^{\prime}+\kappa \sqrt{\tau^{\prime}\left(\tau^{\prime}+1\right)}}} \quad f=k_{F} \frac{d^{2} \sigma / d \Omega_{e} d \omega}{\sigma_{M}\left[v_{L} G_{L}(\kappa, \lambda)+v_{T} G_{T}(\kappa, \lambda)\right]}
$$

- Scaling is preserved for $\Psi '<0$.

Scaling function at QE peak

- Scaling broken at QE peak.
- Influence of the transverse response.
- Ratio of R_{L} and R_{T} contributions:

$$
\tan ^{2} \chi_{T L}=\frac{v_{L} G_{L}}{v_{T} G_{T}}
$$

- Theory overestimates the non-QE contributions.

New Mainz Data - ${ }^{40} \mathrm{Ca}$

- Parasitic measurement during ${ }^{40} \mathrm{Ca}\left(\vec{e}, e^{\prime}\right) \vec{p}$ experiment led by Tel Aviv group.
- Data at $\mathbf{6 0 0} \mathbf{~ M e V ~}\left(38^{\circ}\right)$ comparable with Frascati kinematics.

Online results of the ${ }^{40} \mathrm{Ca}$ experiment

- Simultaneous measurement with ${ }^{40} \mathrm{Ca}$ and ${ }^{12} \mathrm{C}$ target.
- Overlapping kinematics for control over systematic uncertainty.
- Elastic data for validation of absolute normalization.

Online results of the ${ }^{40} \mathrm{Ca}$ experiment

- Simultaneous measurement with ${ }^{40} \mathrm{Ca}$ and ${ }^{12} \mathrm{C}$ target.
- Overlapping kinematics for control over systematic uncertainty.
- Elastic data for validation of absolute normalization.

Conclusions

- MAMI perfect setup for nuclear cross-section measurements at $\sim 1 \mathrm{GeV}$.
- New data sets for 12C, 40Ar and 40Ca targets:
- Several "parasitic" measurements.
- Two full experimental agendas.
- Experiments with jet target for background free measurements.
- New Argon measurements will validate Frascati data.
- Challenge of the analysis: reliable description of the radiative corrections.
- Theoretical support is very welcome.
- Approved experiment on ${ }^{16} \mathrm{O}$ is pending.
- Investigation of exclusive channels and polarization degrees of freedom also possible.

Thank you!

