

Neutrino related data from Mainz

Miha Mihovilovič for A1-Collaboration

NuSTEC 2022

28.3.2022

Motivation - Neutrino experiments

 The properties of neutrinos determined through the measurement of probability of flavor oscillation:

$$P(\nu_{\alpha} \to \nu_{\beta}) \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

• The probability is maximized, when:

$$E \approx \frac{\Delta m^2 L}{\left(4n+2\right)\pi}$$

• The amplitude of the oscillation:

$$P_{\rm max} \propto \sin^2 2\theta$$

Motivation – E12-14-012

- Successful experiment performed at Jefferson Lab.
- Inclusive (and exclusive) data collected for C, Al, Ar, Ti targets at 2.2 GeV and 15.5°.

Experiment confirmed approximate scaling.

Coulomb Sum Rule – ¹⁶O

Coulomb sum rule for Oxygen using coupled cluster theory (S. Bacca).

- Theory extendable to ab-initio studies of neutrino-nucleus cross-sections.
- No data exist!

The Mainz Timeline

- 2017 Letter-of-intent for an inclusive + exclusive measurement on Argon approved by PAC.
- 2019 First test measurements on ¹²C.
- **2020** Full proposal for inclusive experiment on ¹⁶O approved by PAC.
- **2020** Full experimental agenda on ¹²C.
- **2021** Full experiment on ⁴⁰Ar with Jet target.
- **2022** First (parasitic) measurements on ⁴⁰Ca.

Today

2025 – Experiment on ¹⁶O?

New Mainz Data – ¹²C

- Experimental agendas during the commissioning of Jet target and other experiments.
- Data available at: 600 MeV (25°, 28.8°, 36°, 60°), 315 MeV (36°, 60°) and 855 MeV (70°)

New Mainz Data – ⁴⁰Ar

- Data available at: 700 MeV (20°, 32°), 240 MeV (20°)
- Validation of Frascati results.

Challenging experiment

- Experiment performed with a windowless hypersonic gas-jet target developed for MAGIX
- No Luminosity of ~ 10³⁵/cm²s at T= 8K.
- Gas flow 800 l/min.
- Precise luminosity monitoring required.

Argon analysis

- Experiment and analysis led by <u>Max Littich and Luca Doria</u>.
- Study of the luminosity and analysis of experimental cuts completed.

Next steps: Comparison with the simulation, study of radiative corrections

Results of Pilot Carbon Experiment

- Proof-of-principle measurement at 855 MeV (70°)
- SUSAv2 model agrees well with the data
- Other calculations qualitatively agree with the data.
- Consistent QE calculations.

Scaling formalism at q = 0.8 GeV

 Measured cross-sections compared to the existing data via scaling variables and functions:

$$\psi' \equiv \frac{1}{\sqrt{\xi_F}} \frac{\lambda' - \tau'}{\sqrt{(1 + \lambda')\tau' + \kappa\sqrt{\tau'(\tau' + 1)}}} \qquad f = k_F \frac{d^2\sigma/d\Omega_e d\omega}{\sigma_M \left[v_L G_L(\kappa, \lambda) + v_T G_T(\kappa, \lambda) \right]}$$

• Scaling is preserved for $\Psi' < 0$.

Scaling function at QE peak

New Mainz Data – ⁴⁰Ca

- Parasitic measurement during ${}^{40}Ca(\vec{e}, e')\vec{p}$ experiment led by Tel Aviv group.
- Data at 600 MeV (38°) comparable with Frascati kinematics.

Online results of the ⁴⁰Ca experiment

- Simultaneous measurement with ⁴⁰Ca and ¹²C target.
- Overlapping kinematics for control over systematic uncertainty.
- Elastic data for validation of absolute normalization.

Online results of the ⁴⁰Ca experiment

- Simultaneous measurement with ⁴⁰Ca and ¹²C target.
- Overlapping kinematics for control over systematic uncertainty.
- Elastic data for validation of absolute normalization.

Conclusions

- MAMI perfect setup for nuclear cross-section measurements at ~1GeV.
- New data sets for 12C, 40Ar and 40Ca targets:
 - Several "parasitic" measurements.
 - Two full experimental agendas.
- Experiments with jet target for background free measurements.
- New Argon measurements will validate Frascati data.
- <u>Challenge of the analysis:</u> reliable description of the radiative corrections.
- Theoretical support is very welcome.
- Approved experiment on ¹⁶O is pending.
- Investigation of exclusive channels and polarization degrees of freedom also possible.

Thank you!