Short-Range Correlations and the Generalized Contact Formalism

Jackson Pybus MIT

Pairs with small separation

- Pairs with small separation
- High relative and low center-ofmass momentum compared to k_F

- Pairs with small separation
- High relative and low center-ofmass momentum compared to k_F
- Produce a high-momentum tail to the nuclear momentum distribution

- Pairs with small separation
- High relative and low center-ofmass momentum compared to k_F
- Produce a high-momentum tail to the nuclear momentum distribution
- Significant fraction of the nuclear spectral function

- Pairs with small separation
- High relative and low center-ofmass momentum compared to k_F
- Produce a high-momentum tail to the nuclear momentum distribution
- Significant fraction of the nuclear spectral function

SRC reactions need to be understood

"Uncertainties exceeding 1% for signal and 5% for backgrounds may result in substantial degradation of the sensitivity to CP violation and mass hierarchy."

- LBNF and DUNE Conceptual Design Report

R. Weiss et al. PLB (2019)

Pair Interaction

R. Weiss et al. PLB (2019)

Pair Interaction

Center-of-Mass

R. Weiss et al. PLB (2019)

Pair Interaction

Center-of-Mass

Pair Abundance

R. Weiss et al. PLB (2019)

Pair Interaction

Center-of-Mass

Pair Abundance

R. Weiss et al. PLB (2019)

GCF Spectral Function

SRC Relative Momentum

Controlled by the shortdistance NN-interaction

Schrödinger solution to the **NN-interaction**

Two-body momentum distribution

SRC Center-of-Mass Momentum

E.O. Cohen et al, PRL (2018)

Mean-field property described by a 3-D gaussian; width extracted experimentally

пе LI

Many-body calculations can predict type and abundance of SRCs across nuclei "Contracted from QMC and

Factorization has been found to hold in data

M. Patsyuk et al, Nature Physics (2021)

PWIA Cross Section Model

 $\frac{d^6\sigma}{d\Omega_k dE_k d^3 p_1'} = \mathcal{J}\sigma_{eN} S^N(p_1, \epsilon_1)$

PWIA Cross Section Model $\frac{d^6\sigma}{d\Omega_k dE_k d^3 p_1'} = \mathcal{J}\sigma_{eN} S^N(p_1, \epsilon_1)$ e'е E_1', \vec{p}_1

Data from CLAS6 EG2 experiment at Jefferson National Lab allows us to compare with GCF predictions

- 5 GeV e^- beam
- C, Al, Fe, Pb targets
- Large-acceptance
- (e, e'p) and (e, e'pp) reactions

GCF → event generator to produce plane-wave events

- GCF → event generator to produce plane-wave events
- Physics effects applied (radiation, transparency, etc.)

- GCF → event generator to produce plane-wave events
- Physics effects applied (radiation, transparency, etc.)
- Experimental effects applied

- GCF → event generator to produce plane-wave events
- Physics effects applied (radiation, transparency, etc.)
- Experimental effects applied
- Selection cuts applied

Resulting predictions compared directly with measured data

v

 p_e

v

 p_e

 GCF predictions compared with data for different model inputs

A. Schmidt et al. Nature (2020)

- GCF predictions compared with data for different model inputs
- Consistency between model and data confirmed over large dimensionality

A. Schmidt et al. Nature (2020)

- GCF predictions compared with data for different model inputs
- Consistency between model and data confirmed over large dimensionality
- Model implemented into custom GENIE branch, compared with EG2 data using FSI calculation

E

0.4

GCF has been validated with wide range of data

M. Duer et al. PRL (2019); J.R. Pybus et al. PLB (2020); I. Korover et al. PLB (2021)

Conclusions

- Short-range correlations contribute significant effects to nuclear structure
- Modeling SRC interactions is important for understanding leptonnucleus scattering
- The Generalized Contact Formalism can successfully model lepton interactions with SRCs

0.4

